
Emerging Computing
Technologies in HEP

Amir Farbin
University of Texas at Arlington

1Monday, July 27, 2009

Overview

• Meant to be an introduction to get you thinking

• I’ll be speculative... not very detail.

• HEP Computing Challenges

• Emerging Technologies

• One slide on Virtualization... one on Cloud
Computing.

• Solid State Drives

• General Processing Graphics Processing Units

2Monday, July 27, 2009

HEP Computing Problems
1. Moore’s Law: transistors double every 18 months (true)... but HEP (and almost

everyone else) has implicitly assumed that it is clock speed that doubles (false).

• Chips have become smarter with more transistors...

• eg circuitry which automatically “parallelize” instructions... or better/more
cache.

• Limited... CPUs can be just so smart given code which isn’t fundamentally
parallelizable.

• Chips ran too hot at high clock speeds so the current trend is Multi-core
processors rather than faster processing cores.

• Naive Interpretation: Since most HEP applications are embarrassingly
parallel (each event is independent) then N times more cores = N times
the processing rate.

• Not true because: HEP applications use a lot of memory... so you need
N times cores + N times memory to get N times the processing rate.

• Next generation operating systems (eg Snow Leopard) are being rewritten in
response to the shift to multi-core.

3Monday, July 27, 2009

Computing Problems in HEP
2. Detailed Simulation (ie Geant) of lots of particles (ie Jets) through complex

detector geometries (ie LAr) takes lots of processing. (2000-3000 kSI2K s ... ie
10s of mins)

• Clearly can’t do analysis with MC sample == 10% of collected data.

• Must use fast simulation.
6 MODELING

Figure 15: Percentage of Tier 2 CPU required for simulation production as function
of fraction of 2010 recorded data which is fully and fast simulated.

required for a job, the more time required to read that data and the more op-
erations performed on those data. In addition, ROOT analysis was found to
be approximately 20 times faster on D3PD (flat-ntuple) versus POOL based
DPDs, with a large dependence on the language, compiler, and framework
employed in the analysis software.

Based on these findings, we constructed an analysis chain consisting of
the following transformations:

1. D1PD → D2PD : The D1PD is 25 KB/event, and contains 10% of all
recorded, full and fast simulated data. We assume 10$ full simulation,
300% fast simulation. The outputed D2PD contains augmented infor-
mation, resulting in a size of 30 KB/event, but no additional skimming
or thinning. This step most closely corresponds to the Top D1PD entry
of Table 18, which was found to run at 3 Hz, independent of input
(AOD or D1PD).

2. D2PD → D3PD : The output is 10 KB/event and no skimming is ap-
plied. This step most closely corresponds to the Top D3PD entry of

U.S. ATLAS Tier 3 Task Force 68 March 27, 2009

• Consider: Percentage of Tier 2
CPU required for simulation
production as function of fraction
of 2010 recorded data which is
fully and fast simulated.

• Need at least 80% of tier 2s for
MC production to get 10% full/
300% fast of a year’s worth of
data.

• Leaves only 20% for analysis on
tier 2!

4Monday, July 27, 2009

Computing Problems in HEP

3. Computing Models typically do not include resources for the
CPU-intensive analysis activities which in the past decade have
come to characterize analyses of HEP data at the Tevatron and the
B factories:

• sophisticated fits, statistical analysis of large “toy” Monte Carlo
models, matrix element calculations, and use of the latest
discriminant techniques, such as boosted decision trees.

• Huge requirements before conferences...

4. Setup and maintenance of highly distributed systems (like GRID)
requires local attention and expertise.

5Monday, July 27, 2009

Solutions?
• Use modern processors more efficiently... means Parallelization

• Today it mostly means running more processes, but using shared memory.
eg magnetic field/detector geometry/algorithms can be shared jobs.

• Parallelize your HEP code... difficult because it is complicated and we didn’t
design our software for parallel computing.

• Parallelize specific slow steps... (More on this later).

• Access to more computing

• Take simulation load off of tier 2... letting more analysis at tier 2 which has all
of the data (AOD/DPD).

• Use Tier 3s

• Use leveraged resources (eg opportunistic computing).

• Simplify deployment

6Monday, July 27, 2009

Emerging Technologies

• While GRID computing is becoming less popular, other major trends are emerging:

• Virtualization- Emulate virtual machine(s) on physical machines.

• GPGPUs (General Purpose computing on Graphics Processing Units)- most of this talk

• Solid State Drives (SSDs)- No moving parts = fast read/write and random access (most important for HEP).

• Cloud Computing- Leasing resources from companies as needed.

4/3/09 12:14 AMGoogle Trends: SSD, GPGPU , Virtualization, Cloud Computing, GRID Computing

Page 1 of 1http://google.com/trends?q=+SSD%2C+GPGPU+%2C+Virtualization%2C+Cloud+Computing%2C+GRID+Computing&ctab=0&geo=all&date=all&sort=2

afarbin@gmail.com | Sign
out

Search Trends

 Tip: Use commas to compare multiple search terms.

 Searches Websites All regions All years

Scale is based on the average worldwide traffic of virtualization in all years. Learn more

ssd 2.10 gpgpu 0.10 virtualization 1.00 cloud computing 0.30
grid computing 0.70

 Rank by virtualization

Microsoft’s Virtualization Strategy

IT Business Edge - Jan 22 2008

A Printer Virtualization Layer for Virtualization Solutions

SYS-CON Media - Feb 27 2008

Microsoft acquiring Kidaro Virtualization Company

TechWhack (press release) - Mar 12 2008

Samsung shows off 256GB SSD

Techworld.com - May 26 2008

Virtualization Conference - Essential Requirements for Storage Virtualization

SYS-CON Media - Jun 18 2008

Virtualization and the Cloud

IT Business Edge - Sep 15 2008

More news results »

 Regions

1. India

2. Singapore

3. Hong Kong

4. South Africa

5.
Russian
Federation

6.
United
States

7. Taiwan

8. Israel

9. Norway

10. Canada

 Cities

1.
Sunnyvale,
CA, USA

2.
Bangalore,
India

3.
San Jose,
CA, USA

4.
Chennai,
India

5.
Austin, TX,
USA

6.
Mumbai,
India

7.
San
Francisco,
CA, USA

8.
Singapore,
Singapore

9.
Hong Kong,
Hong Kong

10.
Pleasanton,
CA, USA

 Languages

1. Korean

2. English

3. Russian

4. Swedish

5. Finnish

6. Dutch

7. Italian

8. Chinese

9. Japanese

10. Polish

 Export this page as a CSV file

Google Trends provides insights into broad search patterns. Please keep in mind that several approximations are
used when computing these results.

©2008 Google - Google Labs - Discuss - Terms of Use - Privacy Policy - Help

SSD, GPGPU , Virtualization, Cloud Computing, GRID Computing

7Monday, July 27, 2009

Virtualization
• I’ll focus on GPGPU & SSDs... a few comments on VMs and CC.

• Virtualization is fairly common place now.

• Packaging: Most common example in HEP. CernVM allows running
experiment software on any platform (eg laptop). Others: packaging of
difficult to deploy GRID services for Tier 3s.

• Opportunistic Computing: Most promising but unrealized: Idle CPUs pick
up jobs from GRID... heavy payloads make this technically difficult.
Working example at University of Oklahoma using CoLinux (technically
no a VM) & D0 software.

• Site Management: Examples out there... but not absolutely clear if VMs
simplify or complicated things.

• Virtualization is perhaps no longer “emerging”... but not all hopes yet
realized.

8Monday, July 27, 2009

Cloud Computing
• Definition not clear... basically on-demand of access to resources (CPU/

Storage).

• Both in terms of location and cost.

• Implicit reliance on Virtualization...

• Nimbus is notable HEP implementation. Turn any resource (eg Amazon EC2)
into a self-configuring cluster.

• General Problems:

• Reliability/Performance not spectacular

• Cost can be prohibitive.

• Proprietary standards. Industry (eg Amazon) leaders have vested interested
in keeping it so.

• IBM + other companies introduced the “Open Cloud Manifesto”...
acceptance

• Lots of buzz about the “Myth of Cloud Computing”
9Monday, July 27, 2009

Solid State Drives
• No moving parts... fast read/write... especially random access.

• Sequential rates of ~250MB/s on laptop drives to ~1.5GB/s on
specialized cards (eg ioFusion).

• Rapidly dropping prices.

• Relevance to HEP? Applications (eg simulation) are generally
CPU bound, but:

• Analysis can be IO bound... especially on systems where
100’s of jobs rapidly read data.

• Data transfer (copy).

10Monday, July 27, 2009

ROOT I/O
• The limiting factor in ROOT

I/O is not disk speed... it’s
decompression (CPU
limited).

• > 60% time reading Simple
Data (ntuples) is spend in
decompression.

Figure 2: The breakdown of ROOT I/O. Events are being read off in a continuous loop for several
seconds, and no other operations are done. Note that while the inflate fast call is dominant,
several other calls are also relevant to decompression, including adler32 and inflate

process can represent a bottleneck in speed of analysis – on, for example, a Mac Pro with three
hard drives in a RAID 0 configuration, one observes 300 MB/s data transfer rates.

One high-priority application for SIMD processing (such as is found in GPGPUs , or the Cell
engine, or even in the SIMD extensions of a normal x86 processor) is therefore the optimization
of ROOT I/O. ROOT itself provides for a certain degree of threaded parallelization – in the
most recent 5.20 release of ROOT, parallel decompression threads are experimentally included
in the code, but not enabled by default. The clear advantage to this fact, however, is that the
decompression routines have already been largely factorized out of the main code, and are therefore
easier to modify extensively without major reworks on the rest of the ROOT codebase.

ROOT compression and decompression is based on the PKZIP[40] concept, with some modifi-
cations. PKZIP (originated in 1989 by Phillip Katz) uses the same basic method of compression
as many of the other standards (such as JPEG) that are common on the market. The input file
is broken down into blocks of arbitrary length, and those blocks are sorted by frequency of occur-
rence and then encoded into a reference tree using Huffman encoding, where the most common
blocks will be represented by the shortest unique Huffman codes. The compressed file is then com-
posed of the source file translated into these codes, with a copy of the encoding tree attached for
decompression[40].

The possibility of applying SIMD processing to the problem of compression and decompression
is germane to many fields. It requires reworking, and often rethinking, existing algorithms and
inherited code. One issue that must be addressed in the compression stage of a ROOT file is the
file preprocessing, and how to parallelize it. Separate processes will not have access to the memory
spaces of other threads in most SIMD processors, and even if they did, the accesses would be very
costly.

A number of questions will be addressed in researching this application. Does one break the file
to be compressed into independent Huffman encodings? Does one use a “standardized” compression
tree, as is done in JPEG and other image formats? In decompression, how does one correctly split

12

One big vector

17/03/2009 Ilija Vukotic 15

• Majority of function calls
are in decompression
algorithms.

11Monday, July 27, 2009

Read/Write Tests
• Simple “flat” ntuples are the simplest, therefore fastest, format...

• Controllable test:

• Write Application: Create ntuples with simple types (bool,int,float) and vectors
of simple types... random values/lengths

• Read Application: Histogram every quantity in ntuple.

• Results stabilize with 20 quantities of each type (3 KB/event), and > ~600
events.

• Should we compress?

• ROOT “gzip” compression: 0-9 Levels

• 500k events = 1.5 GB uncompressed. 1.1-1.2 GB with compression.

• Lowest Compression Level = ~5x reduction in write rate!

• Maybe we should evaluate if we should spend more on disk or CPU for
endpoint analysis.

12Monday, July 27, 2009

Hard vs Solid State Drive
• Sequential Read (Write): ~70 (70) MB/s vs 250 (180) MB/s...

• Random depends on data size and pattern.

CPU Limited Simultaneous
Jobs

Compression
Level

Rate (MB/s)Rate (MB/s)

Disk Limited
Simultaneous

Jobs
Compression

Level Hard Drive Solid State Drive

Writing

1 0 25 25

Writing 8 0 50 75Writing
1 9 4 4

Writing
8 9 25 25

Reading

1 0 24 32

Reading 8 0 20 28Reading
1 9 16 20

Reading
8 9 14 17

• Generally CPU limited. ~ 5x write speed reduction with compression.

• With 8x simultaneous access, only uncompressed write is clearly disk limited.

• SSDs help with reading in all cases (improved random access?)

• 2x speed improvement w/ no compression + SSD w/ 8 simultaneous jobs.

13Monday, July 27, 2009

What is GPGPU?
• General Purpose computing on Graphics Processing Units.

• Historically GPU development driven by gaming industry.

• Specialized co-processors + video memory which simultaneously perform the same
operation (generally linear algebra) on multiple chunks of data.

• Single Instruction Multiple Data (SIMD) computing.

• Originally GPUs had lots of simple processing units capable of simple instructions.

• Evolved into execute nearly the same instructions as standard CPUs.

Figure 1: Performance Comparison between GPU vs. CPU

used in the computation of artificial neural networks [22].
Harris [23] uses CML to simulate dynamic phenomena that can be described by partial differ-

ential equations (PDEs). Related to this is the visualization of flows described by PDEs, which has
been implemented using graphics hardware to accelerate line integral convolution and Lagrangian-
Eulerian advection [24, 25, 26]. NVIDIA has demonstrated the Game of Life cellular automata
running on their GPUs, as well as a 2D physics-based water simulation.

Other notable GPGPU success stories include Stanford University’s Folding@Home project,
which uses spare cycles that users around the world donate to study protein folding. A new GPU-
accelerated Folding@Home client contributed 28,000 GFLOPS in the month after its October 2006
release – more than 18% of the total GFLOPS that CPU clients contributed (running on Microsoft
Windows) since October 2000.

Elsewhere, researchers at the University of North Carolina and Microsoft used GPU-based code
to win the 2006 Indy PennySort category of the TeraSort competition, a sorting benchmark testing
price/performance for database operations. Closer to home for the GPU business, the HavokFX
product uses GPGPU techniques to accelerate tenfold the physics calculations used to add realistic
behavior to objects in computer games.

3.3 How GPGPUs Work

GPGPU processing is achieved through a combination of stream processing and traditional GPU
programming techniques, such as stream filtering, scattering, and mapping.

3.3.1 Stream Processing

One of the drawbacks of GPUs is that they can only process independent vertices and fragments,
although they can process many of them in parallel. The latter is especially effective when the
programmer wants to process many vertices or fragments in the same way (like many other forms
of distributed computation). In this sense, GPUs are stream processors – processors that can
operate in parallel by running a single kernel on many records in a stream at once.

A stream is simply a set of records that require similar computation. Streams provide data
parallelism. Kernels are the functions that are applied to each element in the stream. In traditional
GPUs, vertices and fragments are the elements in streams and vertex and fragment shaders are the
kernels to be run on them. Since GPUs process elements independently, there is no way to have

5

• GPUs today have 100’s of cores, and are
capable of simultaneously running O
(10000) threads... achieving 100’s of
GFlops on a single GPU.

• CPUs are optimized for low latency... GPUs are
optimized for high throughput.

• These GPUs are already everywhere!

• Some new Macs have 2 GPUs!

14Monday, July 27, 2009

GPGPU Computing
• An individual core in a GPU is generally not as powerful or fast

as a CPU.

• GPU is optimized for parallel computing:

• It’s all about data parallelism.

• Memory access can be costly. Different types of memory
provide different latency.

• A processing unit with a thread waiting for data switches to
another thread. (All in Hardware).

• Better performance when treads perform same operation
(in step).

• Computation Model

CPU GPU

• Data is moved (possibly asynchronously) between CPU and GPU memory.

• Kernel is a computation initiated by CPU to run on GPU.

• Data is broken into blocks, which is assigned to a physical unit... Multiple treads process each
block, with low latency access to data in that block.

• Allows transparent scaling to different GPUs.

© NVIDIA Corporation 2008 21

Kernel Memory Access

Registers

Global Memory
Kernel input and output data reside here
Off-chip, large
Uncached

Shared Memory
Shared among threads in a single block
On-chip, small
As fast as registers

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

The host can read & write global memory but not shared memory

© NVIDIA Corporation 2008 22

Execution Model

Kernels are launched in grids
One kernel executes at a time

A block executes on one multiprocessor
Does not migrate

Several blocks can reside concurrently on one
multiprocessor

Number is limited by multiprocessor resources

Register file is partitioned among all resident threads

Shared memory is partitioned among all resident thread
blocks

CPU

GPU

15Monday, July 27, 2009

GPGPU Computing
• An individual core in a GPU is generally not as powerful or fast

as a CPU.

• GPU is optimized for parallel computing:

• It’s all about data parallelism.

• Memory access can be costly. Different types of memory
provide different latency.

• A processing unit with a thread waiting for data switches to
another thread. (All in Hardware).

• Better performance when treads perform same operation
(in step).

• Computation Model

• Data is moved (possibly asynchronously) between CPU and
GPU memory. © NVIDIA Corporation 2008 19

CUDA Programming Model

A kernel is executed by a
grid of thread blocks

A thread block is a batch
of threads that can
cooperate with each
other by:

Sharing data through
shared memory

Synchronizing their
execution

Threads from different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© NVIDIA Corporation 2008 20

Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors grouped into 16 multiprocessors (SMs)

Parallel Data Cache enables thread cooperation

G80 Device

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

CPU GPU

• Kernel is a computation initiated by CPU to run on GPU.

• Data is broken into blocks, which is assigned to a physical unit... Multiple treads process each
block, with low latency access to data in that block.

• Allows transparent scaling to different GPUs.

16Monday, July 27, 2009

CPU/GPU Convergence
• Intel is also working the other way...Larrabee will be lots of simple x86 CPUs on

one chip.

17Monday, July 27, 2009

GPGPU Application Development
• Ideal GPGPU Applications exhibit following characteristics:

• Compute Intensity – Large number of arithmetic operations per IO or global memory
reference.

• Data Parallelism – this exists in a dataset if the same function is applied to all records
of an input stream and a number of records can be processed simultaneously
without waiting for results from previous records.

• Data Locality – a specific type of temporal locality common, where data is produced
once, read once or twice later in the application, and never read again.

• In general, code developed for CPU must be explicitly parallelized to run on GPU.

• Must consider how to break data into chucks, with simple algorithm processing each
chunk.

• Model: data is prepared on CPU, shipped to GPU, processed, returned.

• Development environments generally provide extensions to C which allow integration
of CPU/GPU code.

18Monday, July 27, 2009

Hardware/Software Landscape
• Hardware Vendors: NVidia, ATI (AMD now), ClearSpeed, ...

• Software Development Environments: CUDA (NVidia only), BrookGPU, AMD Stream Computing
(AMD only), Sh, OpenCL

• In general, NVidia has been pressing GPGPU the most.

• O(100) of scientific and commercial applications already developed in CUDA.

• Lots of examples on NVidia website.

• Many commonly used libraries already have CUDA implementations (eg LAPACK).

• Most promising development environment is OpenCL (Open Computing Language).

• Initiated by Apple, passed to open consortium, endorsed by nearly everyone.

• Architecture independent parallel computing for CPU and GPUs... use all resources!

• Specs release late 2008. 1st implementation will be in Snow Leopard (next Mac OS X) later
this year.

• AMD has shown OpenCL example using their ATI GPUs.

• Sufficient similarity to CUDA... develop in CUDA now... migrate to OpenCL later.

19Monday, July 27, 2009

HEP Applications (I)
• Many applications in ROOT:

• ROOT I/O: Data decompression is the largest bottleneck to high speed analysis.

• Fitting and Minimization: RooFit, Minuit2 (OO Minuit), etc.

• Likelihood calculation is highly factorizable (over samples, events, hypothesis,
PDFs,...)

• Much time is spent in PDF normalization via MC integration... very parallelizable.

• Statistical libraries: TMVA, MLP, New Stat Tool.

• eg: Evaluation of Boosted Decision Trees is very time consuming, but lends itself
to parallelization.

• Linear Algebra: TMatrix, SMatrix.

• MathCore: Physics Vectors Basic algorithms, Math functions, etc.

• MathMore: Random Numbers, Extra algorithms, Extra Math functions.

20Monday, July 27, 2009

HEP Applications (II)
• Generators- Speed up matrix element calculations.

• Lots of time spent in integration.

• Also possibly parallelizable at event level.

• Detector Reconstruction Algorithms:

• 60x track fitting boost shown Al-Turany et al (CHEP 2009).

• Byte-stream decoding (a big bottle-neck), track fitting, clustering, jet-finding, etc.

• Huge implications for High-Level Trigger.

• Use GPGPUs in Read-Out-Drivers? (Much easier to program than DSPs/FPGAs)

• Detector Simulation (Geant 4).

• Holy Grail... but very difficult. May require complete rewrite.

• Event-level vs Particle-level parallelization?

• Access to geometry/magnetic field difficult.

21Monday, July 27, 2009

First Steps

• Detailed evaluation of ROOT decompression.

• gzip compression is not parallelizable as is...

• worked out format modifications that would make
it possible.

• Need block boundaries. 1-2% additional info.

• Evaluation of CUDA and OpenCL (developer release).

22Monday, July 27, 2009

Simple GPU Test
• Monte Carlo integration of n-dim function. Important in:

• Generators...

• Matrix Element Methods.

• Maximum-likelihood fits... often limits complexity of models.

• First implementations.

• Mostly a learning experience... easy to do things wrong and get non-
optimal results.

• Problems with random numbers... in principle resolvable.

• Find only ~ 3x speed improvements on previous generation GPUs over
CPU.

• Lots of phase-space for optimization.

23Monday, July 27, 2009

GPU Programming Experience
• OpenCL: Compiles GPU code for current architecture at run-time while setting up the

calculation.

• Strange bugs... compiler seems not mature.

• CUDA: Single Architecture allows compiling at compile time.

• Faster execution than OpenCL.

• Code running on GPU must be very simple...

• Data: May only use simple types + arrays of simple types (and structs)...

• Only call functions with simple types. No passing of pointers, so no array passing!

• Makes even the MC integration example hard to generalize.

• Must think of appropriate programming model.

• Data transfer between CPU/GPU memory is time consuming.

• Performance highly dependent on how data is organized... high price for poorly
accessing memory.

24Monday, July 27, 2009

Migrating from CPU to GPU
• You can’t just recompile your code.

• In general, requires rethinking, redesign, and lots of
optimization.

• Model: Use GPU as a parallel co-processor...

• most likely scenarios is to use GPU to assist with specific time
consuming steps.

• Geant4 “Fantasy”:

• Run lots of parallel Geant4 threads.

• Each talks to “Magnetic Field Service” which batch
processes extrapolations on GPU.

25Monday, July 27, 2009

Final Comments
• If your analysis is IO limited, consider

decompressing your ntuples to get faster analysis
on your Tier 3s,.

• Adapting to new technologies is not so simple
(SSDs excepted)

• GPGPU is promising...

• But very challenging... requires R&D.

• In order to take advantage of future processors,
next generation HEP software should be designed
for parallelization.

26Monday, July 27, 2009

In the news
• Last week NVidia + HP provided first GPU + Server capable of providing

GPU to virtual machine.

• GPU has virtualization extensions (like the new Intel CPUs) which is
supported by the Server.

• VMWare will support the GPU extensions.

• IBM + other companies introduced the “Open Cloud Manifesto”.

• Make services open rather than proprietary so cloud services can be
deployed by anyone and clients can migrate.

• Unsurprisingly big players in Cloud Computing didn’t sign (eg Amazon,
Microsoft) so they don’t loose their edge!

• FusionIO will soon release 1.3 TB SSDs cards with 1.5 GB/s read and <50
μsec latency.

27Monday, July 27, 2009

