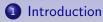
Baryogenesis from the Decays of Exotic Vector-like Squarks

Timothy Cohen with Daniel Phalen and Aaron Pierce

University of Michigan


DPF Conference July 28, 2009

Introduction

The Model Baryogenesis From Exotic Squark Decays The Cosmology Phenomenology Conclusions and Future Work

Outline

- 2 The Model
- 3 Baryogenesis From Exotic Squark Decays
- 4 The Cosmology
- 5 Phenomenology
- 6 Conclusions and Future Work

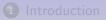
- Determining the dynamical mechanism which generated the baryon asymmetry of the universe (BAU) is still an open question.
- The most accurate determination is given by WMAP5:

$$\eta \equiv \frac{n_B - n_{\overline{B}}}{s} = 6.225 \pm 0.170 \times 10^{-10}$$

- Any model for η must satisfy the Sakharov conditions:
 - Out-of-equilibrium
 - Baryon number violation
 - C and CP violation

- We will generate the BAU from the out-of-equilibrium decays of exotic vector-like squarks.
- Vector-like squarks are present in GUTs, string based models and gauge mediated SUSY breaking.
- Baryon-number and CP violation come from superpotential terms (i.e. we do not rely on SUSY breaking).

- We will generate the BAU from the out-of-equilibrium decays of exotic vector-like squarks.
- Vector-like squarks are present in GUTs, string based models and gauge mediated SUSY breaking.
- Baryon-number and CP violation come from superpotential terms (i.e. we do not rely on SUSY breaking).
- Previous related work includes the 1987 Dimopolous and Hall paper "Baryogenesis at the MeV Era."
- They use out-of-equilibrium decays of MSSM squarks to generate the BAU.
- Their universe could only reheat to $\mathcal{O}(GeV)$ and they were constrained by electric dipole moment measurements.


This model can exhibit the following characteristics:

- Natural splittings for the TeV scale masses of the two lightest exotic squarks.
- Maximizes the reheat temperature of the universe, thereby requiring degenerate TeV scale squarks.
- Allow the TeV exotics to exhibit displaced vertices at the LHC.
- Allow the exotics to be the messengers of gauge mediated SUSY breaking.

Please see the paper for specific benchmark parameters.

Outline

- 2 The Model
- 3 Baryogenesis From Exotic Squark Decays
- 4 The Cosmology
- 5 Phenomenology
- 6 Conclusions and Future Work

- The relevant matter content is
 - the three generations of colored MSSM chiral superfields $(u_i^c, d_i^c, q_i), i = 1 \dots 3,$
 - 2 families of exotic vector-like quark superfields $(D_i, \overline{D}_i), i = 1 \dots 2.$
- There is an approximate Z₂ "exotic-parity."
- If this parity were exact, the lightest exotic would be stable.

• The superpotential is

$$\mathcal{W} = \mathcal{W}_{\mathrm{MSSM}} + \mathcal{W}_{\mathrm{Exotic}}$$

with

$$\mathcal{W}_{\text{Exotic}} = g'_{ijk} \, u_i^c \, D_j \, D_k + (\mu'_R)_{ij} \, d_i^c \, \overline{D}_j + \left(\frac{(\mu'_L)_{ij}}{v_d}\right) H_d \, q_i \, D_j + M_{ij} \, D_i \, \overline{D}_j$$

- In much of what follows $\mu'_L = \mu'_R = \mu'.$
- Note that μ' breaks exotic-parity so any interaction with an odd number of exotics is proportional to μ' .

- Rotate to a basis without μ^\prime mass terms.
- This mixes d_L with \overline{D} and d_R with D.
- There are new gauge interactions in this basis (including all SUSY counterparts):

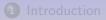
$$\left(\frac{1}{2}\frac{g_w}{c_w}\frac{\mu'_L}{M}\right)(d_L)^{\dagger}\overline{\sigma}^{\mu}(\overline{D}) Z^0_{\mu} + \text{h.c}$$

- Rotate to a basis without μ' mass terms.
- This mixes d_L with \overline{D} and d_R with D.
- There are new gauge interactions in this basis (including all SUSY counterparts):

$$\left(\frac{1}{2}\frac{g_w}{c_w}\frac{\mu'_L}{M}\right)(d_L)^{\dagger}\overline{\sigma}^{\mu}(\overline{D})Z^0_{\mu} + \mathrm{h.c.}$$

• There are superpotential interactions:

$$g' u^{c} D D$$
$$g' \left(\frac{\mu'_{R}}{M}\right) u^{c} d^{c} D$$
$$g' \left(\frac{\mu'_{R}}{M}\right)^{2} u^{c} d^{c} d^{c}$$

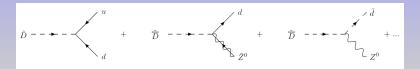


Typical values which lead to the correct value for the BAU and are consistent with the cosmological and phenomenological constraints are

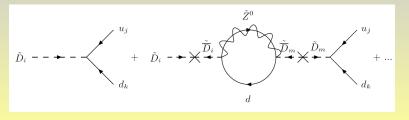
- $g' \lesssim 10^{-2}$
- $\frac{\mu'}{M} \lesssim 10^{-2}$
- $M \sim 100 \,\mathrm{GeV} 10^6 \,\mathrm{GeV}$
- $\Delta M^2 \sim \mu'^2$
- $T_{\rm RH} \sim 10 \, {\rm GeV}$ for TeV scale exotics

Outline

- 2 The Model
- 3 Baryogenesis From Exotic Squark Decays
- 4 The Cosmology
- 5 Phenomenology
- 6 Conclusions and Future Work

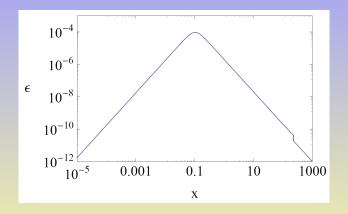


- We concentrate on representative contributions to the BAU, from g' and weak interactions.
- Need to interfere 1-loop with tree diagram.
- BAU will be generated without CP violation in soft terms.
- Define


$$\epsilon \equiv \sum_{i=1}^{n} \frac{\Gamma((\tilde{D}_{\ell})_i \to u+d) - \Gamma((\tilde{D}_{\ell}^*)_i \to u^{\dagger} + d^{\dagger})}{\Gamma_{\text{total}}((\tilde{D}_{\ell})_i)}$$

• The dominant contributions to the total width are given by

• Then ϵ is given by


- Only the lightest exotic squarks make non-trivial contributions to $\epsilon.$
- We can estimate

$$\epsilon \approx \frac{1}{16 \pi} \frac{g^{\prime 2} \left(\frac{g_w}{c_w}\right)^2}{\left(\frac{g_w}{c_w}\right)^2} \left(\frac{\mu^{\prime 2}}{\Delta M^2}\right)$$

where we have assumed a phase of $\pi/2$ in one of the $(g'\,\mu_R')$ couplings and $g' < g_w.$

- Define mass splitting parameter, x, by $(x \mu')^2 \equiv \Delta M^2$.
- Then the μ' suppression of ϵ drops out.
- If $\Delta M^2 \sim \mu'^2 \Leftrightarrow x \sim 1$, then degenerate squarks compensate for small μ' .

- This is a plot of ϵ (please see paper for parameter choices).
- We have properly regulated the resonance via the width of D.
- The full expression for ϵ is given in the paper.

Outline

1 Introduction

2 The Model

3 Baryogenesis From Exotic Squark Decays

4 The Cosmology

5 Phenomenology

6 Conclusions and Future Work

- Introduce a "inflaton" field ϕ .
- Our cosmology begins in a ϕ dominated phase.
- Then ϕ decays to exotic squarks providing an out-of-equilibrium population given by

$$Y_D \equiv \frac{n_D}{s} \approx \mathrm{BR}\left(\frac{T_{\mathrm{RH}}}{m_{\phi}}\right),$$

- Introduce a "inflaton" field ϕ .
- Our cosmology begins in a ϕ dominated phase.
- Then ϕ decays to exotic squarks providing an out-of-equilibrium population given by

$$Y_D \equiv \frac{n_D}{s} \approx \mathrm{BR}\left(\frac{T_{\mathrm{RH}}}{m_{\phi}}\right),$$

• It is important that the squarks decay before they annihilate back to equilibrium.

$$\Gamma_{\text{decay}} > \Gamma_{\text{ann}}(T_{\text{RH}}).$$

where the dominant annihilation rate is $\tilde{D} \ \tilde{D} \leftrightarrow g \ g$

• Then the BAU is given by

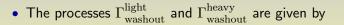
$$\eta \equiv \frac{n_B - n_{\overline{B}}}{s} = \epsilon \left(\frac{Y_D}{s}\right) = \epsilon \operatorname{BR} \left(\frac{T_{\mathrm{RH}}}{m_{\phi}}\right)$$

Note that

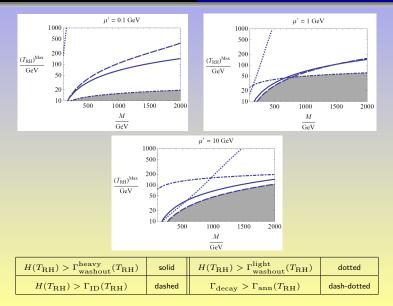
$$\Gamma_{\rm decay} > H(T_{\rm RH})$$

for all models considered.

- This means that the squarks decay instantaneously, i.e. at a temperature $T_{\rm RH}.$


- We must be sure that the BAU is not erased.
- There are three dominant washout processes.
- We must check that the following conditions are satisfied

$H(T_{\rm RH})$	>	$\Gamma_{ m ID}(T_{ m RH})$
$H(T_{\rm RH})$	>	$\Gamma_{\rm washout}^{\rm heavy}(T_{\rm RH})$
$H(T_{\rm RH})$	>	$\Gamma_{\rm washout}^{\rm light}(T_{\rm RH})$



- We must be sure that the BAU is not erased.
- There are three dominant washout processes.
- · We must check that the following conditions are satisfied

$H(T_{\rm RH})$	>	$\Gamma_{ m ID}(T_{ m RH})$
$H(T_{\rm RH})$	>	$\Gamma_{\rm washout}^{\rm heavy}(T_{\rm RH})$
$H(T_{\rm RH})$	>	$\Gamma_{\rm washout}^{\rm light}(T_{\rm RH})$

Outline

1 Introduction

2 The Model

3 Baryogenesis From Exotic Squark Decays

4 The Cosmology

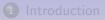
5 Phenomenology

6 Conclusions and Future Work

For the scenario where the exotic squarks are the messengers of gauge mediation:

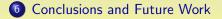
- There are new flavor violating contributions to the MSSM up-squark masses proportional to g'.
- There is the possibility of proton decay via $p^+ \rightarrow K^+ + \tilde{G}$.

For the scenario where the exotic squarks are the messengers of gauge mediation:


- There are new flavor violating contributions to the MSSM up-squark masses proportional to g'.
- There is the possibility of proton decay via $p^+ \rightarrow K^+ + \tilde{G}$.

In general

- There are constraints from unitarity of the CKM matrix.
- There are constraints from $D^0 \overline{D}^0$ mixing.
- Electric dipole moments vanish at 1-loop and the 2-loop effect is smaller then from the standard model.
- There is the spectacular LHC signal of long-lived tracks with baryon number violating decays.



Outline

- 2 The Model
- 3 Baryogenesis From Exotic Squark Decays
- 4 The Cosmology

5 Phenomenology

Conclusions

- We have realized the BAU via the out-of-equilibrium decays of exotic vector-like squarks.
- We explored a variety of tests and predictions for this class of models.
- The exotic squarks can be the messengers of gauge mediation.

Conclusions

- We have realized the BAU via the out-of-equilibrium decays of exotic vector-like squarks.
- We explored a variety of tests and predictions for this class of models.
- The exotic squarks can be the messengers of gauge mediation. Future Work
 - Do a detailed calculation with specific g' and μ' matrices.
 - Work out details when quarks are the lightest exotic states.
 - Find family symmetry when degenerate squarks are required.
 - Build a DM sector.
 - Do a full collider simulation to determine the viability of discovering Baryon-number violation at the LHC.

THANK YOU

Are there any questions?

19 / 19

Backup Slides

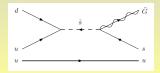
 $19 \, / \, 19$

Large \tilde{D} mass splittings								
scenario	g'	$\frac{M}{(\text{GeV})}$	$\frac{\mu'}{(\text{GeV})}$	$\frac{\Delta M^2}{(\text{GeV})^2}$	ϵ			
large splittings	0.4	500	4	$(57\mu')^2$	2×10^{-6}			
Degenerate \tilde{D} masses								
scenario	g'	$\frac{M}{(\text{GeV})}$	$\frac{\mu'}{(\text{GeV})}$	$\frac{\Delta M^2}{(\text{GeV})^2}$	ϵ			
high $T_{\rm RH}$	0.005	1000	2		8×10^{-6}			
displaced vertices	0.06	500	10^{-5}		$6 imes 10^{-3}$			
gauge mediation	0.01	10^{6}	1	$(0.4\mu')^2$	6×10^{-5}			

I and D man and this an								
Large D mass splittings								
scenario	$\frac{T_{\rm RH}}{{\rm GeV}}$	$\frac{H}{\text{GeV}}$	$\frac{\Gamma_{\text{decay}}}{\text{GeV}}$	$\frac{\Gamma_{ann}}{\text{GeV}}$	$\frac{\Gamma_{\text{ID}}}{\text{GeV}}$	$\frac{\Gamma_{\text{washout}}^{\text{heavy}}}{\text{GeV}}$	$\frac{\Gamma_{\text{washout}}^{\text{light}}}{\text{GeV}}$	$\frac{m_{\phi}}{\text{GeV}}$
large splittings	18	4×10^{-16}	8×10^{-4}	3×10^{-6}	8×10^{-17}	2×10^{-24}	1×10^{-17}	5000
Degenerate \tilde{D} masses								
scenario	$\frac{T_{\rm RH}}{{\rm GeV}}$	$\frac{H}{\text{GeV}}$	$\frac{\Gamma_{\text{decay}}}{\text{GeV}}$	$\frac{\Gamma_{ann}}{\text{GeV}}$	$\frac{\Gamma_{\text{ID}}}{\text{GeV}}$	Γ ^{heavy} GeV	$\frac{\Gamma_{\text{washout}}^{\text{light}}}{\text{GeV}}$	$\frac{m_{\phi}}{\text{GeV}}$
high $T_{\rm RH}$	75	8×10^{-15}	4×10^{-5}	1×10^{-5}	1×10^{-15}	4×10^{-16}	6×10^{-20}	10^{5}
displaced vertices				2×10^{-16}	~ 0	~ 0	~ 0	10^{5}
gauge mediation	1000	1×10^{-12}	1×10^{-8}	1×10^{-9}	~ 0	~ 0	~ 0	10^{7}

• We must assume a texture in the g' and μ' matrices for the "large splittings" benchmark.

- One could imagine that the exotic squarks are the messengers of gauge mediated SUSY breaking.
- There are new contributions to the MSSM up-squark masses at 1-loop and 2-loops which can lead to FCNCs:


$$(\delta \tilde{m}_{u_R}^{1-\text{loop}})_{ij}^2 = -\frac{1}{8\pi^2} g'_{ikm} g'^*_{jkm} \frac{F_X^4}{M_X^6} (\delta \tilde{m}_{u_R}^{2-\text{loop}})_{ij}^2 \approx -\frac{1}{(16\pi^2)^2} g'_{ikm} g'^*_{jkm} g_s^2 \frac{F_X^2}{M_X^2}$$

- One could imagine that the exotic squarks are the messengers of gauge mediated SUSY breaking.
- There are new contributions to the MSSM up-squark masses at 1-loop and 2-loops which can lead to FCNCs:

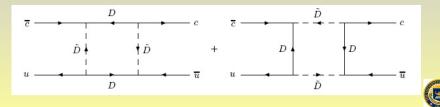
$$(\delta \tilde{m}_{u_R}^{1-\text{loop}})_{ij}^2 = -\frac{1}{8\pi^2} g'_{ikm} g'^*_{jkm} \frac{F_X^4}{M_X^6} (\delta \tilde{m}_{u_R}^{2-\text{loop}})_{ij}^2 \approx -\frac{1}{(16\pi^2)^2} g'_{ikm} g'^*_{jkm} g_s^2 \frac{F_X^2}{M_X^2}$$

• There is also the possibility of proton decay via

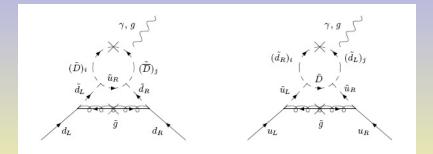
There are a variety of phenomenological constraints one should consider:

• Unitarity of the CKM matrix:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 + N\left(\frac{\mu'}{M}\right)^2 = 0.9999 \pm 0.001 \Rightarrow \frac{\mu'}{M} \lesssim 0.03$$

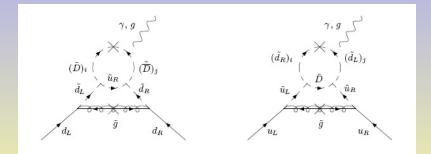


There are a variety of phenomenological constraints one should consider:


• Unitarity of the CKM matrix:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 + N\left(\frac{\mu'}{M}\right)^2 = 0.9999 \pm 0.001 \Rightarrow \frac{\mu'}{M} \lesssim 0.03$$

•
$$D^0 - \overline{D}^0$$
 mixing constrains g' :



• EDMs are only generated at 2-loops and are sim4 orders smaller then the SM contribution:

• EDMs are only generated at 2-loops and are sim4 orders smaller then the SM contribution:

There are potential LHC signals to determine Baryon-number violating decays.

