Analysis of $D^0 - \bar{D^0}$ Mixing Using the CDF II Detector DPF Meeting, 2009

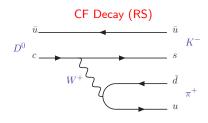
Nagesh Kulkarni, Paul Karchin, Mark Mattson (for CDF Collaboration)

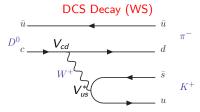
Wayne State University Detroit, MI

July 28, 2009

Charm Mixing Overview

- Mixing (Oscillations between matter and anti-matter)occurs when the mass eigenstates are not the same as flavor eigenstates.
- ▶ In $D^0 \overline{D^0}$ system, assuming no CP violation, flavor eigenstates can be written in terms of mass eigenstates as:

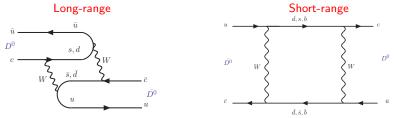

$$|D^0
angle=rac{1}{\sqrt{2}}(|D_1
angle+|D_2
angle), \qquad |ar{D^0}
angle=rac{1}{\sqrt{2}}(|D_1
angle-|D_2
angle)$$


• Mixing is characterized by difference in masses and decay widths of $|D_1\rangle$ and $|D_2\rangle$ states.

$$x = rac{m_2 - m_1}{\Gamma}, \qquad y = rac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

Charm Mixing Overview ...

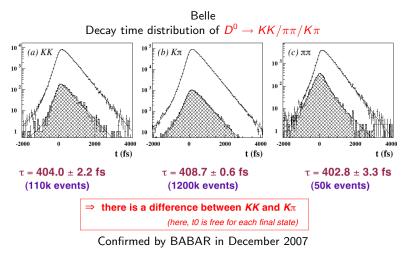
► Cabibbo favored (CF) $D^0 \to K^- \pi^+$ decay and Doubly Cabibbo-suppressed (DCS) $D^0 \to K^+ \pi^-$ decay.



Suppressed at "*cdW*" and "*usW*" vertices by CKM factors.

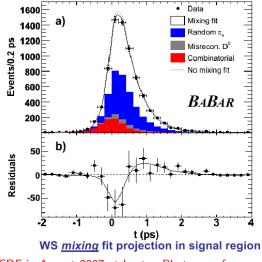
•
$$\Gamma(K^+\pi^-)/\Gamma(K^-\pi^+) = 3.80 \pm 0.18 \times 10^{-3}$$

Charm Mixing Overview ...


• Mixing through long-range processes with intermediate $KK/\pi\pi$ states, followed by Cabibbo favored decay $\bar{D^0} \rightarrow K^+\pi^-$ or through short-range processes.

- ▶ Short range mixing is negligible in SM ($x_{box} = O(10^{-5})$ and $y_{box} = O(10^{-7})$)
- However exotic particles could enhance mixing.
- ▶ Long range calculations in SM yields x, y < O(10⁻³)
- CP violations is extremely small in SM ($\approx O(0)$); Evidence for CP violation will be an unambiguous signal to new physics.

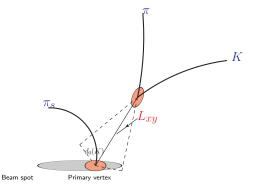
Experimental Status


 First evidence for charm mixing came from Belle and BABAR in March 2007 at Moriond.

Experimental Status ...

BABAR

Difference in decay time distribution of $D^0 \to K^+\pi^-$ and $D^0 \to K^-\pi^+$



Confirmed by CDF in August 2007 at Lepton-Photon conference, with 3.8σ significance DPF Meeting, 2009 July 28, 2009

Experimental Status ...

- Other charm mixing measurements (semi-leptonic decays, multi-pion hadronic decays, Dalitz plots) are 1-3 σ in significance.
- Heavy Flavor Averaging Group provides world average significance of 6.7σ
- However, no single analysis has observed mixing with significance $> 5\sigma$.
- No evidence of CP violation found.
- Plots presented today will show possibility of observation of mixing in $D^0 \rightarrow K\pi$ channel.

Event Reconstruction

$$D^* \to D^0 \pi \to K \pi$$
 decay in $x - y$ plane

- At CDF we analyze $D^* \rightarrow D^0 \pi, D^0 \rightarrow K \pi$ decay chain.
- Pion from D* has softer momentum
- D^0 decays to $K^+\pi^-$ or $K^-\pi^+$
- Reconstruct D⁰ from K and π tracks
- This decay chain allows us to measure decay length from primary vertex.
- It also helps to improve signal significance.

Time-dependent decay rate

Wrong sign signal:

$$D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^+ \pi^- \text{ (DCS/Mixing)}$$

Right sign signal:

$$D^{*+}
ightarrow D^0 \pi^+, \ D^0
ightarrow K^- \pi^+ ext{ (CF)}$$

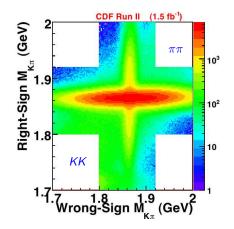
Similar for charge conjugates.

▶ Goal is to measure WS/RS ratio as a function of decay time t, given by (assuming no CP violation)

$$R(t/ au) = R_D + \sqrt{R_D}y'(t/ au) + rac{x'^2 + y'^2}{4}(t/ au)^2$$

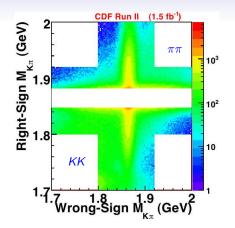
where,

$$R_D \equiv |\frac{A(DCS)}{A(CF)}|^2$$
$$x = \frac{\Delta M}{\Gamma}, y = \frac{\Delta\Gamma}{2\Gamma}$$

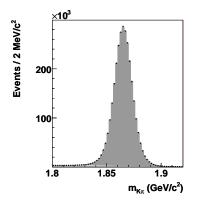

- $x' = x\cos\delta + y\sin\delta$ $y' = -x\sin\delta + y\cos\delta$
- $\delta \equiv$ Strong Phase Difference between DCS and CF amplitudes $\tau \equiv$ mean D^0 lifetime, $t \equiv$ Proper time

CDF Data

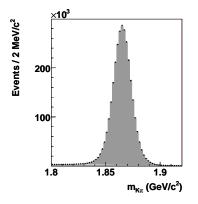
- Data collected from February 2002 to January 2009
- $\int Ldt \approx 4.0 \text{ fb}^{-1}$ with $\sqrt{s} = 1.96 \text{ TeV}$
- Analysis technique is illustrated using $\int Ldt = 1.5 \text{ fb}^{-1}$
- Data passes Two-Track Trigger requirements.
 - Trigger is optimized for B-decays, but has good charm acceptance.
 - Tracks with displaced vertex
 - Good acceptance for proper decay times $> 0.5 D^0$ lifetimes.
- Trigger tracks are used to reconstruct D^0 candidate.


CDF Data ...

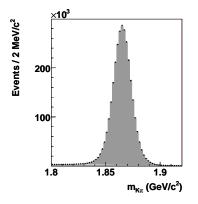
- ► D^0 candidates are reconstructed with both $K\pi$ and πK interpretations \rightarrow WS and RS.
- Huge RS events dominate WS signal

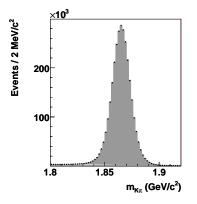

WS Signal Selection

- When looking for WS signal, exclude candidates with RS mass |m_{Kπ}(RS) − m_{D⁰}| < 20 MeV</p>
- We call this "Opposite Assignment Mass" cut
- To further clean up WS signal, we apply particle identification (PID) cut (dE/dx).
 - Compare two-track PID probability for Kπ and πK assignments
 - Use higher value.



Opposite Mass Assignment + PID cuts exclude >96.4% RS decays from WS signal. Keeps 78% of signal.


- We measure the ratio of WS and RS D*s a function of decay time and determine x² and y'
- For the analysis assuming no CP violation, we combine D^{*+} and D^{*-} .
- ► To measure CP violation, the same technique is used separately for D^{*+} and D^{*-}.

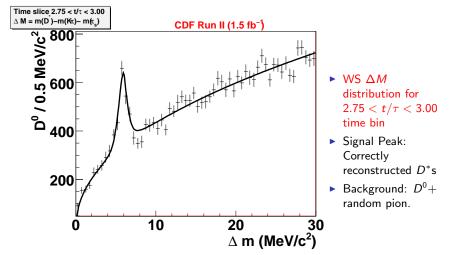

 We have a large and pure sample of RS D⁰.

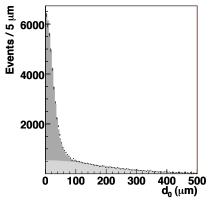
- ► We have a large and pure sample of RS D⁰.
- Since RS and WS decays have the same kinematics, they have the same distributions.


- ► We have a large and pure sample of RS D⁰.
- Since RS and WS decays have the same kinematics, they have the same distributions.
- We obtain signal shapes from RS distribution and use the same shapes for WS distributions.

- ► We have a large and pure sample of RS D⁰.
- Since RS and WS decays have the same kinematics, they have the same distributions.
- We obtain signal shapes from RS distribution and use the same shapes for WS distributions.
- No Monte Carlo is needed for this technique and avoids systematic uncertainties arising from fixing the signal and background shapes from Monte Carlo.

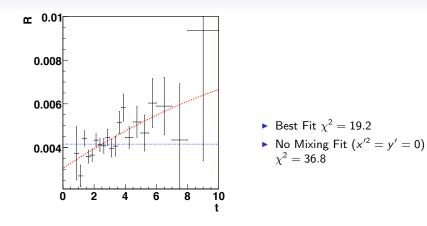
First Step: $K\pi$ Mass Fit


- Divide RS and WS data in 20 time bins and divide each time bin 60 mass difference bins. $\Delta M = m(D^*) - m(D^0) - m(\pi_s)$
- Fitting $K\pi$ mass distribution for a given time bin and given mass difference bin gives D^0 yield corresponding to the ΔM bin.

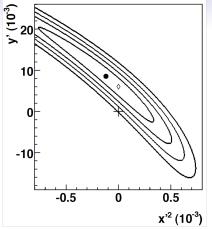

DPF Meeting, 2009

Step 2: Mass Difference Fit

- Fitting $K\pi$ mass distributions in all 60 mass difference bins gives $\# D^0$ vs. ΔM distribution.
- ΔM fit give D^* yield for the given time bin.


Impact Parameter of D^0

RS distribution for $5 < t/\tau < 6$ (1.5 fb⁻¹). Light grey: B-background


- D* from B decays will have wrong decay time.
- Prompt D* originating at the primary vertex form narrow peak in IP distribution.
- Wide distribution is from D*s from secondary decays.

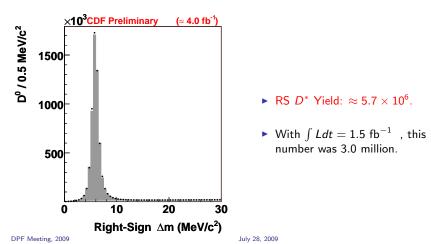
WS/RS Ratio ($\int Ldt = 1.5 \text{ fb}^{-1}$)

$$R(t/ au) = R_D + \sqrt{R_D}y'(t/ au) + rac{x'^2 + y'^2}{4}(t/ au)^2$$

Probability Contours ($\int Ldt = 1.5 \text{ fb}^{-1}$)

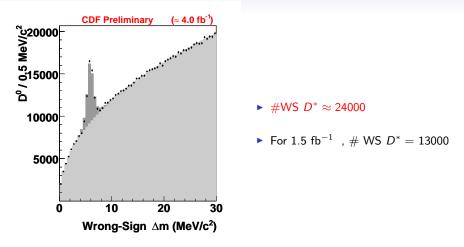
Bayesian probability contours equivalent to 1-4 σ

• $R_D = (3.04 \pm 0.55) \times 10^{-3}$ • $y' = (8.54 \pm 7.55) \times 10^{-3}$


•
$$x'^2 = (-0.12 \pm 0.35) \times 10^{-3}$$

- No-mixing excluded at 3.8 Gaussian standard deviation level
- $+\equiv$ No-mixing point ($x'^2 = y' = 0$)
- • \equiv Best fit point
- ♦ \$\lap\$ = Highest probability physically allowed point (x² > 0)

Current Developments


- We now have $\approx 4.0 \text{ fb}^{-1}$ luminosity available.
- We explored new cuts but did not find significant improvements.
- We also tried applying Artificial Neural Network technique. The result produced were comparable to the standard analysis confirming optimal cuts.

Time Integrated RS D^* distribution with \approx 4.0 fb⁻¹

Current Developments...

Time Integrated WS D^* with \approx 4.0 fb⁻¹

• Assuming that significance is proportional to square root of number of events (significance $\propto \sqrt{N}$) and that the central values remain the same, we may expect significance of $\approx 5\sigma$

- The work to incorporate new data is in progress
- ► Mixing can be measured separately for D^{*+} and D^{*-} for CP violation, using the same technique.
- Since Kaon and pion have different absorption cross-section in the detector material, we need to determine corrections on the mixing parameters.
- The CP violation study work is in progress.

Conclusion

- ► We presented D⁰ − D^{¯0} mixing analysis technique using 1.5 fb⁻¹ integrated luminosity.
- The published result excluded no-mixing with 3.8 Gaussian standard deviation.
- ▶ With $\approx 4.0 \text{ fb}^{-1}$ integrated luminosity currently available, we are approaching observation in $D^0 \rightarrow K\pi$ channel.