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Charm Mixing Overview

I Mixing (Oscillations between matter and anti-matter)occurs when the
mass eigenstates are not the same as flavor eigenstates.

I In D0 − D̄0 system, assuming no CP violation, flavor eigenstates can be
written in terms of mass eigenstates as:

|D0〉 =
1√
2

(|D1〉+ |D2〉), |D̄0〉 =
1√
2

(|D1〉 − |D2〉)

I Mixing is characterized by difference in masses and decay widths of |D1〉
and |D2〉 states.

x =
m2 −m1

Γ
, y =

Γ2 − Γ1

2Γ
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Charm Mixing Overview ...

I Cabibbo favored (CF) D0 → K−π+ decay and Doubly Cabibbo-suppressed
(DCS) D0 → K+π− decay.
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Suppressed at “cdW ” and “usW ”
vertices by CKM factors.

I Γ(K+π−)/Γ(K−π+) = 3.80± 0.18× 10−3
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Charm Mixing Overview ...

I Mixing through long-range processes with intermediate KK/ππ states,
followed by Cabibbo favored decay D̄0 → K+π− or through short-range
processes.
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I Short range mixing is negligible in SM (xbox = O(10−5) and
ybox = O(10−7))

I However exotic particles could enhance mixing.

I Long range calculations in SM yields x , y < O(10−3)

I CP violations is extremely small in SM (≈ O(0)); Evidence for CP
violation will be an unambiguous signal to new physics.
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Experimental Status

I First evidence for charm mixing came from Belle and BABAR in March
2007 at Moriond.

Belle
Decay time distribution of D0 → KK/ππ/Kπ

Confirmed by BABAR in December 2007
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Experimental Status ...
BABAR

Difference in decay time distribution of D0 → K+π− and D0 → K−π+

Confirmed by CDF in August 2007 at Lepton-Photon conference, with 3.8σ
significance
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Experimental Status ...

I Other charm mixing measurements (semi-leptonic decays, multi-pion
hadronic decays, Dalitz plots) are 1-3 σ in significance.

I Heavy Flavor Averaging Group provides world average significance of 6.7σ

I However, no single analysis has observed mixing with significance > 5σ.

I No evidence of CP violation found.

I Plots presented today will show possibility of observation of mixing in
D0 → Kπ channel.
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Event Reconstruction

d0(K)

K

π

πs
Lxy

Beam spot Primary vertex

D∗ → D0π → Kπ decay in x − y plane

I At CDF we analyze
D∗ → D0π,D0 → Kπ decay
chain.

I Pion from D∗ has softer
momentum

I D0 decays to K+π− or K−π+

I Reconstruct D0 from K and π
tracks

I This decay chain allows us to
measure decay length from
primary vertex.

I It also helps to improve signal
significance.
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Time-dependent decay rate

I Wrong sign signal:
D∗+ → D0π+,

D0 → K+π− (DCS/Mixing)
Right sign signal:

D∗+ → D0π+,
D0 → K−π+ (CF)

Similar for charge conjugates.

I Goal is to measure WS/RS ratio as a function of decay time t, given by
(assuming no CP violation)

R(t/τ) = RD +
√

RDy ′(t/τ) +
x ′2 + y ′2

4
(t/τ)2

where,

RD ≡ |
A(DCS)

A(CF )
|2

x =
∆M

Γ
, y =

∆Γ

2Γ

x ′ = xcosδ + ysinδ

y ′ = −xsinδ + ycosδ

δ ≡ Strong Phase Difference between
DCS and CF amplitudes
τ ≡ mean D0 lifetime, t ≡ Proper time
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CDF Data

I Data collected from February 2002 to January 2009

I
∫

Ldt ≈ 4.0 fb−1 with
√

s = 1.96 TeV

I Analysis technique is illustrated using
∫

Ldt = 1.5 fb−1

I Data passes Two-Track Trigger requirements.

I Trigger is optimized for B-decays, but has good charm acceptance.

I Tracks with displaced vertex

I Good acceptance for proper decay times > 0.5 D0 lifetimes.

I Trigger tracks are used to reconstruct D0 candidate.
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CDF Data ...

I D0 candidates are reconstructed
with both Kπ and πK
interpretations → WS and RS.

I Huge RS events dominate WS
signal KK

ππ
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WS Signal Selection

I When looking for WS signal,
exclude candidates with RS mass
|mKπ(RS)−mD0 | < 20 MeV

I We call this ”Opposite Assignment
Mass” cut

I To further clean up WS signal, we
apply particle identification (PID)
cut (dE/dx).

I Compare two-track PID
probability for Kπ and πK
assignments

I Use higher value.

KK

ππ

Opposite Mass Assignment + PID cuts exclude > 96.4% RS decays from WS
signal. Keeps 78% of signal.
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Analysis Method

I We measure the ratio of WS and RS D∗s a function of decay time and
determine x ′2 and y ′

I For the analysis assuming no CP violation, we combine D∗+ and D∗−.

I To measure CP violation, the same technique is used separately for D∗+

and D∗−.
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Clean RS signal
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Right-sign Kπ mass plot (
∫

Ldt = 1.5
fb−1 ) to illustrate clean D0 signal.
Dark grey: Signal fit
Light grey: Background fit

I We have a large and pure sample
of RS D0.

I Since RS and WS decays have the
same kinematics, they have the
same distributions.

I We obtain signal shapes from RS
distribution and use the same
shapes for WS distributions.

I No Monte Carlo is needed for this
technique and avoids systematic
uncertainties arising from fixing
the signal and background shapes
from Monte Carlo.
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First Step: Kπ Mass Fit
I Divide RS and WS data in 20 time bins and divide each time bin 60 mass

difference bins. ∆M = m(D∗)−m(D0)−m(πs)

I Fitting Kπ mass distribution for a given time bin and given mass
difference bin gives D0 yield corresponding to the ∆M bin.
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I WS Kπ Fit for
2.75 < t/τ < 3.00
and
5.5 < ∆M < 6.0
MeV/c2

I Signal: Correctly
reconstructed D0

+ random pion

I Background:
Mis-identification
+ Combinatorial
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Step 2: Mass Difference Fit

I Fitting Kπ mass distributions in all 60 mass difference bins gives # D0 vs.
∆M distribution.

I ∆M fit give D∗ yield for the given time bin.
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I WS ∆M
distribution for
2.75 < t/τ < 3.00
time bin

I Signal Peak:
Correctly
reconstructed D∗s

I Background: D0+
random pion.
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Impact Parameter of D0
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RS distribution for 5 < t/τ < 6
(1.5 fb−1 ). Light grey: B-background

I D∗ from B decays will have wrong
decay time.

I Prompt D∗ originating at the
primary vertex form narrow peak
in IP distribution.

I Wide distribution is from D∗s from
secondary decays.
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WS/RS Ratio (
∫

Ldt = 1.5 fb−1 )

t
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R(t/τ) = RD +
√

RDy ′(t/τ) +
x ′2 + y ′2

4
(t/τ)2

I Best Fit χ2 = 19.2

I No Mixing Fit (x ′2 = y ′ = 0)
χ2 = 36.8
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Probability Contours (
∫

Ldt = 1.5 fb−1 )

Bayesian probability contours
equivalent to 1-4 σ

I No-mixing excluded at 3.8
Gaussian standard deviation level

I + ≡ No-mixing point
(x ′2 = y ′ = 0)

I • ≡ Best fit point

I ♦ ≡ Highest probability physically
allowed point (x ′2 > 0)

I RD = (3.04± 0.55)× 10−3

I y ′ = (8.54± 7.55)× 10−3

I x ′2 = (−0.12± 0.35)× 10−3
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Current Developments
I We now have ≈ 4.0 fb−1 luminosity available.
I We explored new cuts but did not find significant improvements.
I We also tried applying Artificial Neural Network technique. The result

produced were comparable to the standard analysis confirming optimal
cuts.

Time Integrated RS D∗ distribution with ≈ 4.0 fb−1
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I RS D∗ Yield: ≈ 5.7× 106.

I With
∫

Ldt = 1.5 fb−1 , this
number was 3.0 million.
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Current Developments...
Time Integrated WS D∗ with ≈ 4.0 fb−1
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I #WS D∗ ≈ 24000

I For 1.5 fb−1 , # WS D∗ = 13000

I Assuming that significance is proportional to square root of number of
events ( significance ∝

√
N) and that the central values remain the same,

we may expect significance of ≈ 5σ
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Current Developments

I The work to incorporate new data is in progress

I Mixing can be measured separately for D∗+ and D∗− for CP violation,
using the same technique.

I Since Kaon and pion have different absorption cross-section in the detector
material, we need to determine corrections on the mixing parameters.

I The CP violation study work is in progress.
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Conclusion

I We presented D0 − D̄0 mixing analysis technique using 1.5 fb−1

integrated luminosity.

I The published result excluded no-mixing with 3.8 Gaussian standard
deviation.

I With ≈ 4.0 fb−1 integrated luminosity currently available, we are
approaching observation in D0 → Kπ channel.
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