

Superb prospects: Belle & KEKB upgrades (Detectors II)

July 26-31, 2009

Kay Kinoshita University of Cincinnati Belle Collaboration

B-factories (1999-2009)

Primary goal: establish unitarity & complex phase of CKM matrix

Kobayashi & Maskawa (1973)

- proposed 3rd generation of particles
- Explain CP violation in K, predict for B

Experiments (-2009)

2008

Nobel

- CP asymmetry manifested in diverse processes in B decay
 - -> many measurements, (over)constrain CKM

found consistent with unitarity

B-factories (1999-2009)

... + many other successes

Headliners

- \cdot new charmonia, charmonium-like states, ISR, $\mathsf{D}_{sJ},$ many B decays
- D^0 mixing
- limits on/hints of New Physics

+ more measurements, on

B, charm, tau, 2-photon, $\Upsilon(4S)$, $\Upsilon(10860)$, B_s, $\Upsilon(3S)$, $\Upsilon(1S)$, ...

Addressing CP, CKM, QCD, HQ spectroscopy, LFV, NP, Dark Matter, ...

B pairs world sample

DPF 2009

Why collect more?

DPF 2009

With 1.5G Bpairs (+similar #'s of c, tau) at Belle+Babar

many best measurements: testing CKM unitarity, exploring SM-suppressed/forbidden regions

Why collect more?

furthermore ...

NEED other source(s) of CP violation

to account for baryon asymmetry of universe...

Why collect more?

With x10² luminosity, in a facility designed for CP studies, a significant new window

b->sy, b->dy, B-> s|+|-RH currents in B->{s} γ CP in D mixing

LFV **τ->μγ**

SM-forbidden lepton processes

 $\rho^{0}\rho^{0}(\phi_{2}),$ Dalitz (ϕ_3), b->d γ

b->s penguin(ϕ_1)

Lepton universality

Higgs in Β-> τν, Β->D^(*) τν

complementary to LHC: γ , K_L detection; hermeticity -> neutrinos

Sensitivity to New Physics: an example

SM: "golden" vs "other" $sin2\phi_1(sin2\beta)$

"golden" B -> $J/\psi K_s$

tree (real V_{ij}) $\propto V_{cb}^* V_{cs}$

 $\underline{\text{mixing}} + \text{tree} \propto V_{\text{tb}}^{*2} V_{\text{td}}^{2} V_{\text{cb}} V_{\text{cs}}^{*}$

well-measured rate

=> relative phase = $2\varphi_1$, CP asymmetry ~ sin $2\varphi_1$

"other" $sin2\phi_1$

b -> sss: identical reasoning

penguin (real V_{ij}) $\propto V_{tb}^* V_{ts}$ mixing+penguin $\propto V_{tb}^{*2} V_{td}^2 V_{tb}^* V_{ts}^*$

V_{tb}*V_{ts} real => zero phase difference

=> relative phase = $2\varphi_1$, CP asymmetry ~ sin $2\varphi_1$

"New Physics" w complex phase φ_{new} ---> CP asymmetry ≠ sin (2φ₁)

Super 13

 $-0.43 \pm 0.49 \pm 0.09$

0.01 ± 0.31 ± 0.05 ± 0.09

••• 0.86 ± 0.08 ± 0.03

0.68 ± 0.15 ± 0.03 +0.21 -0.13

1

0.97 +0.03

 0.62 ± 0.04

2

°

φ π[™] K_s

b→qqs

-2

π[⁺]π[°] K_S N≰BaBar ≚ BaBar

¥

Belle

BaBar

BaBar

Naïve average

-1

0

Belle

Naïve World Average $sin2\phi_1(b - sq\bar{q}) = 0.62 \pm 0.04$

Compare to ccs: $sin2\phi_1(b \rightarrow ccs) = 0.672 \pm 0.024$

 $CL = 0.19 (1.3\sigma)$

difference is < 0

DPF 2009

=> what we need is Billions and Billions of B's

Super KEKB Luminosity projection

KEKB luminosity upgrade strategy

KEKB luminosity upgrade strategy

Tentative machine parameters New lattice: still under study

		LER	HER	
Emittance	ε _x	2.8	2.0	nm
Coupling	$\epsilon_{\rm y}/\epsilon_{\rm x}$	0.74	1.80	%
Horizontal beta at IP	β_x^*	17.8	25.0	mm
Vertical beta at IP	β_y^*	0.26	0.26	mm
Horizontal beam size	σ_x^*	7.06	7.07	μm
Vertical beam size	σ,* <	0.073	0.097	μm
Bunch length	σ_{z}	5	5	mm
Bunch length Half crossing angle	σ _z φ	3	5 0	mm mrad
Bunch length Half crossing angle Beam Energy	σ _z φ Ε	9 3 3.5	5 0 8.0	mm mrad
Bunch length Half crossing angle Beam Energy Beam Current	σ _z φ Ε Ι	9 3 3.5 3.84	5 0 8.0 2.21	mm mrad A
Bunch length Half crossing angle Beam Energy Beam Current Number of bunches	σ _z φ Ε Ι n _b	3 3.5 3.84 22	5 0 8.0 2.21 52	mm mrad A
Bunch lengthHalf crossing angleBeam EnergyBeam CurrentNumber of bunchesBeam-beam parameter	σ _z φ Ε Ι η _b ξγ	3 3.5 3.84 22 0.079	5 0 8.0 2.21 52 0.079	mm mrad A

<100 nanometers

KEK has achieved low ε

Accelerator Test Facility (ATF) (linear collider damping ring)

Linear collider R&D Laser wire beam size monitor

300mW 532nm Solid-state Laser Fed into optical cavity Position resolution: 2µm PRL 92, 054802 (2004) 27

Detector: Background projections

Belle detector SuperKEKB (hi-current design) normalized to current rates

2025

2025

Issues Radiation damage Occupancy Fake hits, pile-up Event rate

Design upgrade to tolerate ~20X at full luminosity

Detector: Belle II

Design Study Report arXiv: 0810.4084

Upgrade of Belle to operate w 20X background, 50X event rate baseline: current performance + improved PID

Baseline design - not final Satisfies minimum requirements Many alternatives under study: Design to be finalized in 2009

Physics studies Detector simulations based on Geant 3, fast simulator, Geant 4

Belle II baseline

Silicon inner tracker

- improve vertexing -> thin innermost 2 layers, reduce inner radius
- improve K_s acceptance -> increase outer radius
- background/occupancy -> striplets, pixels, pipelined readout
- + standalone tracking, dE/dx

	Belle	sBelle
Detector type	4-DSSD	2-DEPFET pixel + 2- DSSD + 2-DSSD (short strips/angled)
		chip-on-sensor lyr 5&6
Inner radius	15 mm	10 mm
Outer radius	70 mm	120 mm
DSSD readout	Hold 3µs/ readout 27µs	pipelined
Readout time	800 ns	50 ns

Silicon inner tracker

Layers 5 and 6 shorten strips angle to reduce total area

Drift chamber

- improve momentum resolution -> increase outer radius
- improve dE/dx -> longer radial path
- background/occupancy -> smaller cells

	Belle	Belle II (†>0)
Inner radius	77 mm	160 mm
Outer radius	880 mm	1140 mm
Inner layer cell size	12 mm	8 mm
# sense wires	8400	15140

Particle ID

- improve K/ π for b->s vs b->d, etc.
- add endcap PID
- reduce material in front of calorimeter

	Belle	Belle II (†>0)
Barrel	Aerogel TOF dE/dx in CDC	Cerenkov time-of- propagation (TOP)
Endcap	(dE/dx)	Aerogel RICH

(inoshita

DPF 2009

Particle ID Endcap Proximity focusing Aerogel RICH

Electromagnetic calorimeter

reduce background without loss of resolution

	Belle	Belle II (†>0)
Barrel	CsI (TI)	CsI(Tl) +waveform sampling/fitting
Endcap Rise time Photodetector	CsI(Tl) 1000 ns Si photodiode	Pure CsI 30 ns PMT +waveform

K_L/muon detector • reduce background in endcap

	Belle	Belle II (†>0)
Barrel	Glass RPC, streamer mode	Same RPC (avalanche mode?)
Endcap	Glass RPC, streamer mode	Plastic scintillator x-y strips

DPF 2009

Status of project

KEK	Roadma	I P						Super 40
	2006	2008	2010	2012	2014	2016	2018	uest for BSM
•	J-PARC							
	constru	Iction	experiment	t + upgrad	e			
•	KEKB						Placement	of KEKB upgrade on
	experim	ient up	ograde	experi	iment + u	pgrade	Roadmap (J	Tan. 2008)
•	LHC						-> official p	priority of KEK
	constru	ction	experiment	+ upgrade	•			
•	PF/PF-A	R						
	experim	nent + upgr	ade					
•	R&D for A	Advanced A	Accelerator	and Deter	ctor Tech	nology		
	Detecto	or R&D						
	ERL							
	C-ERL F	R&D C	onstruction	n 1	test expe	riment		
			PF	-ERL R&I	D constr	uction	experiment	
	ILC							
	ILC R	&D						
					con	struction		

- 3-year upgrade: 2010-2
- L ~ 8 × 10^{35} cm⁻²s⁻¹
- Funding: $3.2 \times 10^9 \neq (\sim $32M)$ for FY 2009 request for construction (2010-): \$350M

DPF 2009

Belle II Collaboration

 New international collaboration (not extension of present Belle) http://superb.kek.jp

• First meeting December 2008

• next meeting Nov. 18-9, 2009

• Spokesperson: P. Krizan (Ljubljana)

US institutions University of Cincinnati University of Hawaii Virginia Tech Wayne State

Summary

- B-factories 1999-2009, >1.4×10⁹ B pairs: firmly established CKM as main source of CP asymmetry at low energy placed multiple constraints on CKM unitarity high precision -> probe for New Physics rare processes as windows to New Physics incl. D mixing, tau decays
- •~10²X luminosity will probe >1 TeV mass scale precision CKM, CP, lepton universality, LFV (complementary to LHC)
- KEKB upgrade for L=8 \times 10³⁵ included in KEKB Roadmap
- •SuperKEKB/Belle II plans well underway new international collaboration forming