MICE Status

Linda R. Coney

DPF July 27, 2009

Outline

Introduction
Neutrino Factory
What is MICE?

Why build it?

MICE Status
Conclusions

Future Neutrino Beams

- Neutrino oscillations have been observed
 - Neutrinos have mass and they mix leads to great interest in neutrino physics
- What's next?
 - Develop detailed understanding of the properties of neutrinos to understand the physics of flavor.
- Neutrino Factory: Create an intense beam of neutrinos from the decay of a stored muon beam:
 - Beam composition known precisely
 - Energy spectrum known and tuneable
 - Flux of neutrinos determined from muon current in storage ring
 - Produce beams of neutrinos 1000 times more intense than conventional beams
 - A wide variety of possible oscillation channels can be studied.
 - Conventional neutrino physics can be done close to the Factory with vastly increased statistics.

Neutrino Factory Accelerator Facility Baseline out of International Scoping Study

ISS Accelerator WG report: RAL-2007-023

Proton Driver

- 4 MW, 2 ns bunch
- Target, Capture, Drift $(\pi \rightarrow \mu)$ & Phase Rotation
 - Hg Jet
 - 200 MHz train
- Cooling
 - **30** πmm (⊥)
 - 150 πmm (L)
- Acceleration
 - $\blacksquare 103 \text{ MeV} \rightarrow 25 \text{ GeV}$
- Decay rings
 - 7500 km L
 - 4000 km L
 - Baseline is race-track design

The Neutrino Factory

Well-understood neutrino source:

$$\mu^+ \to e^+ \nu_{\mu} \nu_{e}$$

μ Decay Ring:

$$\mu^- \rightarrow e^- \nu_\mu \nu_e$$

S. Geer, Phys. Rev. **D57** (1998) 6989

- Flavor content fully known
- "Absolute" Flux Determination is possible
 - Beam current, polarization, Near Detector semi & purely leptonic event rates
- Tremendous control of systematic uncertainties with well designed near detector(s)

Neutrino Factory - μ Decay Rings

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$		
$\overline{ u}_\mu o ar{ u}_\mu$	$ u_\mu ightarrow u_\mu$	disappearance	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_\mu ightarrow u_e$	appearance (challenging)	
$\overline{ u}_{\mu} ightarrow ar{ u}_{ au}$	$ u_\mu ightarrow u_ au$	appearance (atm. oscillation)	
$\nu_e \rightarrow \nu_e$	$\bar{\nu}_e \to \bar{\nu}_e$	disappearance	
$ u_e ightarrow u_\mu $	$\bar{\nu}_e ightarrow \bar{ u}_\mu$	appearance: "golden" channel	
$ u_e ightarrow u_{ au}$	$\bar{\nu}_e ightarrow \bar{ u}_ au$	appearance: "silver" channel	

- 'Reference' Neutrino Factory:
 - ≥ 10²¹ useful decays/yr; exposure '5 plus 5' years
- Two baselines (≈7500 km & ≈4000 km)
 - 50 kT magnetised iron detector (MIND) with MINOS performance – Golden Channel Detector
 - Backgrounds (for golden channel):
 - **Sign of** μ mis-ID'd
 - 🔒 Charm decays

 $E_{res} \sim 0.15 * E_{v}$

"Golden" \rightarrow Sign of μ observed in detector opposite to that stored in decay ring

$$\mu^{+} \rightarrow \nu_{e} \Rightarrow \nu_{\mu} \mathbf{n} \rightarrow \mu^{-} \mathbf{p}$$

International Scoping Study – Physics Reach

WBB: 2MW, 1MT H2OC, 1300 km BL

BB350: γ =350, 1MT H₂OC, 730 km BL

Neutrino Factory R&D

Challenges:

- High intensity proton source
- Complex target
- Want to accelerate muon beam
 - Stem from decay of pions
 - Large phase space
 - \rightarrow ie. High emittance
 - \rightarrow need to cool (shrink) beam

What do we need?

- MICE
 - Proof of ionization cooling
 - ~20% cost of Neutrino Factory
- Detector designs
- Targetry studies
- RF in magnetic field studies

Muon Cooling

- Muons captured from pion decay form a beam with a large size and divergence.
- In order to accelerate this beam, it is necessary to shrink the beam (cooling).
- Conventional beam cooling techniques require a relatively long amount of time (compared to the 2 µs life-time of a muon)
- A new solution is required...

Ionisation Cooling

- 1. Beam passes through absorber and loses energy/momentum.
- 2. Multiple scattering will result in a change in the angle of the particle, but not the total momentum
- 3. Re-acceleration with an RF cavity restores the longitudinal momentum, but not the transverse component: transverse cooling!

Goals:

- To build and operate a realistic section of a cooling channel, as might be used in a Neutrino Factory.
- To measure the muon into and out of the cooling channel and measure a 10% reduction in emittance of the beam with a precision of 1%, and experimentally demonstrate ionization cooling
- 140-240 MeV/c muon beam tuneable from 2-10 π mm-rad transverse emittance

MICE Collaboration

MICE Beamline

- ISIS 800 MeV proton synchrotron at RAL
 First beam March 2008
- Titanium target
- Pions captured by quadrupole triplet and momentum selected by dipole
- Followed by 5T superconducting decay solenoid (5 m long) contain π and decay muons
- Second dipole momentum select muons

MICE Beamline

14

MICE Target

- Titanium target (UK) dipped into ISIS beam at end of 20 ms beam cycle at ~0.4 Hz
 - Only dips once every 50 ISIS cycles
- Original target ran 190K dips into beam
- Target failure December 2008
 - Tip melted, shorter but no lost material
 - shaft bent 10°
 - Target jammed due to alignment collar which came loose

Redesign/re-engineered

- Simplified Circular shaft
- No alignment collar
- Installation during late August ISIS shutdown

Understand target operation

- Beam loss
- Dip depth and timing
- How affect ISIS
- How many particles in MICE

Target Operation Data

Live ISIS Beam Loss plots into MICE control room

 Took data to study beam losses in ISIS as function of MICE target operation

Target DAQ info is available in MICE control room

 ISIS beam intensity, Total Beam Loss, Sector 7, Sector 8

Decay Solenoid

5T superconducting solenoid (PSI)

Problems:

- Quench at ~300A
- Quench protector trips

Solutions:

- Missing multi-layer insulation caused quenches → installed Mar/April
- Bad wire caused glitches in QP system → Fixed
- Cooled down

Ran up to full operating current April 2009

4.6 K

Beamline Commissioning

Method:

- Start with 480 MeV/c proton momentum at D1
- Tune Q1,Q2,Q3 to maximize particle rate in counter
- Scan 2nd dipole magnet at proton momentum
- measure pion and proton production rates

- Start with 300 MeV/c beam
 Reduced field gradually until 100 MeV/c
- Only electrons remain in beam

MICE Detectors

Particle identification: TOF, CKOV, Calorimeter

- Upstream
 - Time of Flight TOF0 + TOF1 (Italy)
 - 2 Aerogel threshold Cherenkov detectors (US,Belgium)
 - $\rightarrow \pi/\mu$ separation up to 360 MeV/c
 - ➔ Beam purity better than 99.9%
- Downstream
 - TOF2
 - Calorimeter (Italy,Geneva,FNAL)
 - Kloe-like (KL) Lead-scintillating fiber sandwich layer
 - Electron-Muon Ranger (EMR)
 - 1m³ block extruded scintillator bars
 - Also measure muon momentum
 - \rightarrow µ/e separation

Particle tracking

- Scintillating Fiber trackers
- Measure position and reconstruct momentum

Commissioning PID Detectors

TOF

- 2 planes of 1 inch orthogonal scintillator slabs in x and y
- Timing resolution determined to be ~60 ps
- Time of flight for nominal 300 MeV/c pion beam

20

- Took data in MICE beamline
- Typical light spectrum from single PMT
- Muon tagging efficiency 98%

MICE Tracker

Scintillating fiber tracker (UK,US)

- Reduce transverse emittance by 10%
- Trackers need to measure this reduction to 0.1% precision
- Determine x,x',y,y' and momentum
- High resolution needed
- Design
 - 350 μ m scintillating fiber doublet layers
 - Active area has diameter of 30 cm
 - 5 measurement stations with 3 planes each

Inside 4 T solenoid magnet (US) ~1m long with 5 SC coils

Spectrometer Status

Trackers

- Both trackers completed
- Cosmic ray test Tracker1
- Design goals met:
 - Light yield goal of 10.5 PE → measured 11 PE
 - Measured resolution consistent with goal of 430 mm
 - Efficiency less than 1/1000 dead channels (< 0.1%)</p>
- Tracker2 now taking cosmic ray data

Magnets

- First spectrometer solenoid built
- Cooldown followed by magnet performance tests
- Then ship to FNAL for field measurements
- Second follows 3 months later

Cooling Channel

- Liquid hydrogen absorbers (Japan) alternating with normal conducting 201 MHz RF cavities
 - First absorber fabricated at KEK
 - Test soon with LH₂
- LH2 absorbers inside absorberfocus-coil (AFC) module (UK) with superconducting coils to provide strong focus at absorber
 - Delivery expected Feb 2010 first AFC module
- RF cavities (US) inside Coupling Coil modules (China)
 - Challenges due to operation inside magnetic field

RF Module

RF Cavities

- LBNL responsible for design and fabrication of cavities
- Copper procured for first 5 cavities
- Formed into half shells delivery end 2009

RF Coupling Coils

- Final design of RFCC modules done
- Harbin Institute of Technology responsible for design and fabrication of coupling coils
- LBNL responsible for RF cavity integration with coils
- Fabrication underway first unit delivery summer 2010

RF power

- ~1MW in 1ms pulse at 1 Hz per cavity
- 4 sets of amplifiers (LBNL,CERN) being refurbished at Daresbury Lab (UK)
- First test summer 2009

The MICE Schedule

Experiment designed to grow with each step providing important information 25

MICE Status

- Beamline in place and commissioning begun
 - Decay solenoid working
 - Hall infrastructure nearly done for Steps I-III
- Detectors
 - PID detectors in place and working well
 - Trackers
 - Tracker1 performing well
 - Tracker2 taking cosmic ray data now
- First emittance measurement late 2009
- First cooling 2010

Conclusions

- A neutrino factory would provide excellent opportunities to study neutrino physics in detail.
- Neutrino Factory R&D is under way and covers aspects of the machine from front end through acceleration.
- MICE results will provide critical input on the feasibility of muon beam cooling and will inform future Neutrino Factory designs.

Emittance

Each spectrometer measures 6 parameters per particle xy t $x' = dx/dz = P_x/P_z$ $y' = dy/dz = P_y/P_z$ $t' = dt/dz = E/P_z$ Determines, for an ensemble (sample) of N particles, the moments: Averages <x> <y> etc... Second moments: variance(x) $\sigma_x^2 = \langle x^2 - \langle x \rangle^2 \rangle$ etc... covariance(x) $\sigma_{xy} = \langle x, y - \langle x \rangle \langle y \rangle \rangle$ $\mathbf{M} = \begin{pmatrix} \sigma_{\mathbf{x}}^2 & \sigma_{\mathbf{xy}} & \sigma_{\mathbf{xt}} & \sigma_{\mathbf{xx'}} & \sigma_{\mathbf{xy'}} & \sigma_{\mathbf{xt'}} \\ \cdots & \sigma_{\mathbf{y}}^2 & \cdots & \cdots & \cdots & \sigma_{\mathbf{yt'}} \\ \cdots & \cdots & \sigma_{\mathbf{t}}^2 & \cdots & \cdots & \sigma_{\mathbf{tt'}} \\ \cdots & \cdots & \cdots & \sigma_{\mathbf{x}}^2 & \cdots & \sigma_{\mathbf{x't'}} \\ \cdots & \cdots & \cdots & \cdots & \sigma_{\mathbf{y}}^2 & \sigma_{\mathbf{y't'}} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \sigma_{\mathbf{t}}^2 \end{pmatrix}$ Covariance matrix Getting at e.g. Over

is essentially impossible with multiparticle bunch measurements

Evaluate emittance with:
$$\begin{aligned} \epsilon^{6D} &= \sqrt{\det(\mathbf{M}_{xytx'y't'})} \\ \epsilon^{4D} &= \sqrt{\det(\mathbf{M}_{xyx'y'})} = \epsilon_{\perp}^{2} \end{aligned}$$

Compare Ein with Eout

Ionization Cooling

Ionization cooling:

- lonization gives cooling term, multiple scattering gives a heating term

- Ionization per density is proportional to Z, multiple scattering is inversely proportional to X₀ thus prop to Z(Z+1)
- Thus, best cooling achieved with low Z: hydrogen, lithium hydride (LiH)
- □ Definition of emittance: Need to perform single particle experiment to measure ε with full correlations

-
$$V_{ij}$$
 is covariance matrix of phase space:

$$V_{ij} = \begin{bmatrix} \beta_{\perp}/p_{z} & -\alpha_{\perp} & 0 & -(\beta_{\perp}\kappa - \mathcal{L}) \\ -\alpha_{\perp} & p_{z}\gamma_{\perp} & +(\beta_{\perp}\kappa - \mathcal{L}) & 0 \\ 0 & +(\beta_{\perp}\kappa - \mathcal{L}) & \beta_{\perp}/p_{z} & -\alpha_{\perp} \\ -(\beta_{\perp}\kappa - \mathcal{L}) & 0 & -\alpha_{\perp} & p_{z}\gamma_{\perp} \end{bmatrix}$$

$$\mathcal{L} \approx \frac{\langle L_{canon} \rangle}{2m_{\mu}c\varepsilon_{N}}$$

$$\kappa = \text{radius of curvature}$$
Emittance: area of 4D ellipse
$$x'^{4} = \frac{1}{m_{\mu}c} \sqrt[4]{|V_{ij}|}$$

$$\mathcal{E}_{4D} = \frac{1}{m_{\mu}c} \sqrt[4]{|V_{ij}|}$$

EXPECTED PERFORMANCE

5% momentum loss in each absorber \rightarrow 15% cooling for large ε beam

Equilibrium emittance for H₂ $\varepsilon_0 \sim 2.5 \ (\pi)$ mm-radians (acceptance of accelerators in NF 15 – 30 (π) mm-radians)

 \rightarrow Measure $\Delta \varepsilon$ to 1%

MICE PPRP Sept 2006

PID Detectors: TOF & CKOV

TOF

- 2 planes of 1 inch orthogonal scintillator slabs in x and y
- Read out by fast PMT
- used to identify protons, pions, electrons and especially muons

CKOV

- Threshold, aerogel
- Used to ID electrons

Figure 3: Amplitude histograms from the Cherekov counters. Top four histograms correspond to CKOVa. Bottom four histograms correspond to CKOVb.

Figure 1: Vertical (left) and horizontal (right) profiles in TOF0 obtained from online monitoring histogram at 300 MeV/c (top) and 100 MeV/c (bottom). The beam can be considered as centred at both momenta.

Tracker2 Readout System

- Two cryostats
 - Each powered by new Wiener power supply
- Each cryostat has 2 VLPC cassettes
- Each VLPC cassette has 2 AFE IIt boards
 → total of 8 AFE boards
- In rack:
 - 9 VLSB modules: 1 master to control timing and 8 slaves (one for each AFE board)
 - 1553 module: controls AFE initialization, bias voltage controls, temp controls, data taking
 - Fanout: sends correct timing signal to all AFE boards
- Goals:
 - characterize VLPC cassettes
 - get everything working correctly together in layout to be used at RAL

COOLING

- Accelerators have limited acceptance in phase space
- Muon beams from pion decay occupy large volume of p.s. x'
 - wide $\sigma_x \sim 10 \text{ cm}$
 - divergent $\sigma_{\theta} \sim 150 + \text{mr}$
 - *i.e.* have large normalised emittance, \mathcal{E}_n

In 2D
$$\varepsilon_n = \frac{1}{m_\mu c} (\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2)^{\frac{1}{2}} \rightarrow \beta \gamma \sigma_x \sigma_g$$

- Cooling = reduce emittance → 2 10 x number of μ into accelerator
 Highly advantageous for a NF & essential for muon collider
- Finite muon lifetime → conventional cooling (e.g. stochastic) too slow
- *Ionisation cooling* the only practical possibility

MICE PPRP Sept 2006

 $rac{arepsiloneta}{\pi}$

at a focus

εγ

X

Area = ε

IONISATION COOLING

- Pass muons of ~200 MeV/c through
 - absorbers \rightarrow reduce p_t and p_l
 - RF replaces p_l
 - ➔ beam 'cooled'
- Emittance decreases exponentially:

$$\frac{d\varepsilon_n}{dX} = \frac{-\varepsilon_n}{\beta^2 E} \left\langle \frac{dE}{dX} \right\rangle + \frac{\beta_t \ 0.014 \ \text{GeV}^2}{2\beta^3 E m_\mu X_0}$$

- < dE/dX > versus scattering (X_0)
- \rightarrow low Z absorber material
- \rightarrow tight focus (low β function)
- Figure of Merit = $X_0 < dE/dX >$

 \rightarrow H₂ is best absorber material

MICE PPRP Sept 2006

Absorber RF

RF Cavities

	Z	FoM	Rel. 4D cooling
н	1	252.6	1.000
He	2	182.9	0.524
Li	3	130.8	0.268
С	6	76.0	0.091
AI	13	38.8	0.024