Light Hidden Fermionic Dark Matter in Neutrino Experiments

Jennifer Kile, Amarjit Soni Brookhaven National Laboratory

July 31, 2009 DPF 2009

Motivation

- Dark matter makes up $\sim 20\%$ of our universe.
- Recent interest in "hidden" models: low-mass particles connected to SM only via high-energy interactions. New particles don't have to be heavy to be undiscovered!
- DM could be light, but coupled to SM particles at high scale.
- Should consider all observable DM-SM interactions.
- Desirable to do model-independent study of possible interactions of low-mass DM with SM.

Results Preliminary!

Dark Matter Direct Searches

Usual DM direct search:

- O(10 GeV 10 TeV) DM scatters elastically off O(10 100 GeV) nucleus.
- DM nonrelativistic, $v \sim 10^{-3}c$.
- Example:

 $100~{\rm GeV}$ DM particle scattering off $100~{\rm GeV}$ nucleus: nucleus receives momentum kick $p\sim 100~{\rm MeV}$

However, could get same signature via other (inelastic) interactions.

Can we use existing detectors to find/rule out a broader range of interactions?

Dark Matter Direct Searches

- Instead, could consider inelastic scattering $fN \rightarrow FN'$ (f = DM, N, N' = nuclei, nucleons, $F = DM, \nu, e...$).
- Take $m_F << m_f$.
- If $m_f \sim 100$ MeV, final state similar to that of usual DM detection case.
- Can use existing detectors to consider 1 100 MeV mass range, but with inelastic scattering?
- Can consider case where F is invisible (not done here) or visible. We take case F = e.

\longrightarrow NEUTRINO DETECTORS!

Neutrino Experiments

- Consider processes with $\bar{f}u \rightarrow de^+$.
- Solar & reactor experiments probe O(1 100 MeV)range in E_{ν} for various nuclei.
- Will specifically look at Super-K:

Usual interaction: $\bar{\nu}_e p \rightarrow n e^+ E_e \simeq E_{\nu}$.

Replace ν with nonrelativistic $f: \bar{f}p \rightarrow ne^+ E_e \simeq m_f$.

 \rightarrow f looks like monoenergetic neutrinos.

 \rightarrow must translate limits on $\bar{\nu}_e$ to limits on \bar{f} .

Will only consider $\overline{f}p \rightarrow ne^+$ for this talk.

Assumptions and Simplifications

Here, we consider DM which

- is fermionic *and*
- is a singlet under SM gauge group

So, we look for operators which

- are dimension-6 (or less)
- are $SU(3) \times SU(2) \times U(1)$ -invariant
- can give the process $\bar{f}u \to de^+$ and
- aren't suppressed by ν mass.

Will find f is of the mass relevant to ν experiments.

Operator Basis

This leaves 6 operators (all 6-D, suppressed by Λ^2):

$$\mathcal{O}_{W} = g \bar{L} \tau^{a} \tilde{\phi} \sigma^{\mu\nu} f W^{a}_{\mu\nu}$$

$$\mathcal{O}_{\tilde{V}} = \bar{\ell}_{R} \gamma_{\mu} f \phi^{\dagger} D_{\mu} \tilde{\phi}$$

$$\mathcal{O}_{T} = \epsilon_{ij} \bar{L}^{i} \sigma^{\mu\nu} f \bar{Q}^{j} \sigma_{\mu\nu} d_{R}$$

$$\mathcal{O}_{Sd} = \epsilon_{ij} \bar{L}^{i} f \bar{Q}^{j} d_{R}$$

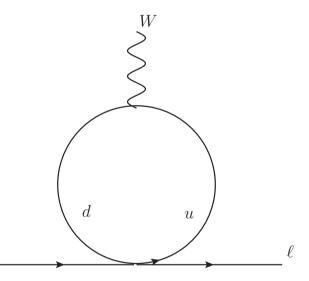
$$\mathcal{O}_{Su} = \bar{L} f \bar{u}_{R} Q$$

$$\mathcal{O}_{VR} = \bar{\ell}_{R} \gamma_{\mu} f \bar{u}_{R} \gamma^{\mu} d_{R}$$

 $\begin{array}{l} L,Q:\ SU(2) \text{ doublets.} \\ \ell_R,u_R,d_R: \text{ right-handed } SU(2) \text{ singlets.} \\ \phi = \text{SM Higgs, } \tilde{\phi} = i\tau^2\phi^*. \\ \text{In all cases, } f \text{ right-handed.} \end{array}$

DM must have long lifetime. Rarely decays to γ 's ($\tau \gtrsim 10^{19}$ yr), e^+e^- ($\tau \gtrsim 10^{17}$ yr).

 $\mathcal{O}_W = g \bar{L} \tau^a \tilde{\phi} \sigma^{\mu\nu} f W^a_{\mu\nu}$: gives $f \to \nu \gamma$ at tree level.


$$\rightarrow \frac{|C_W|^2}{\Lambda^4} \lesssim \frac{1}{(8 \times 10^7 \text{TeV})^4} \quad (m_f = 1 \text{ MeV})$$

$$\begin{aligned} \mathcal{O}_{\tilde{V}} &= \bar{\ell}_R \gamma_\mu f \phi^\dagger D_\mu \tilde{\phi} \to \mathsf{EWSB} \to \frac{-ig|C_{\tilde{V}}|v^2}{2\sqrt{2}\Lambda^2} \bar{\ell}_R \gamma^\mu f W_\mu \text{ vertex} \\ \to & \text{If } m_f \gtrsim 2m_e, \ f \to e^+ e^- \nu \text{ at tree level.} \\ & \to \frac{|C_{\tilde{V}}|^2}{\Lambda^4} \lesssim \frac{1}{(10^6 \text{ TeV})^4} \ (m_f = 20 - 80 \text{ MeV}) \end{aligned}$$

L These results used to get limits on coeff's of other \mathcal{O} s.

 $\mathcal{O}_{VR} = \ell_R \gamma_\mu f \bar{u}_R \gamma^\mu d_R$: $m_f \gtrsim m_\pi$: tree-level $f \to \pi^+ e^-$; must have $m_f \lesssim m_\pi$. \mathcal{O}_{VR} mixes into $\mathcal{O}_{\tilde{V}}$, gives $f \to e^+ e^- \nu_e$ at 1-loop.

All fermions in \mathcal{O}_{VR} righthanded; Diag suppressed by u, d Yukawas, log divergent.

 \mathcal{O}_{VR} gives a contribution to $C_{\tilde{V}}/\Lambda^2 of$

$$\frac{C_{VR}}{\Lambda^2} \frac{12}{(4\pi)^2} \frac{m_u m_d}{v^2} \ln\left(\frac{\Lambda^2}{m_f^2}\right)$$

 \mathcal{O}_{VR} cont'd:

Suppression strong enough to make \mathcal{O}_{VR} viable DM interaction.

$$\rightarrow \frac{|C_{VR}|^2}{\Lambda^4} \lesssim \frac{1}{(20 \text{ TeV})^4} (m_f = 20 \text{ MeV})$$

$$\lesssim \frac{1}{(50 \text{ TeV})^4} (m_f = 50 \text{ MeV})$$

$$\lesssim \frac{1}{(80 \text{ TeV})^4} (m_f = 80 \text{ MeV})$$

Strong constraints, but weak enough to be interesting for ν experiments!

- 1-loop calc of O_{VR} mixing into $O_{\tilde{V}}$ does not correctly represent contributions from low (\leq few \times 100 MeV) quark momenta.
- Instead, consider diagram where f decays via π^+ .*
- Diagram suppressed by f, e mass via π coupling.

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ud}|^2 f_\pi^4 m_e^2}{1024\pi^3 m_f \Lambda^4} \frac{q^2 (m_f^2 - q^2)^2}{(m_\pi^2 - q^2)^2}$$

- Gives limits on NP scale of few-50 TeV for $20 \text{ MeV} < m_f < 80 \text{ MeV}$.
- Similar to 1-loop results; take 1-loop limits.

*Thanks to Mark Wise for this calculation.

• $\nu - f$ mixing: \mathcal{O}_{VR} gives neutrino mass term $\bar{L}\tilde{\phi}f$ at 2 loops. Allows $\rightarrow f \rightarrow \nu\nu\bar{\nu}$ and $f \rightarrow \nu e^+e^-$.

Mixing angle proportional to $e,\,u,$ and d Yukawas, ${\cal O}(10^{-16}) \to \tau \sim 10^{26}$ s.

• $\pi^+ \rightarrow e^+ f$: Searches for heavy ν 's in π decay give limits on $|C_{VR}|/\Lambda^2$ of order $1/(10 \text{ TeV})^2$ for $m_f < 130 \text{ MeV}$.

 $\mathcal{O}_{Sd}(=\epsilon_{ij}\bar{L}^if\bar{Q}^jd_R)$ and $\mathcal{O}_{Su}(=\bar{L}f\bar{u}_RQ)$:

Mix into \mathcal{O}_W via 2-loop diag, give $f \to \nu \gamma$. Only 1 Yukawa suppression: inadequate to make f long-lived.

Order-of-magnitude limit: $\frac{C_{Su,Sd}}{\Lambda^2} < O\left(\frac{1}{(10^3 \text{ TeV})^2}\right)$

 $\mathcal{O}_T = \epsilon_{ij} \bar{L}^i \sigma^{\mu\nu} f \bar{Q}^j \sigma_{\mu\nu} d_R$

Mixes into \mathcal{O}_W at one-loop order, with one Yukawa suppression \rightarrow even tighter limit.

Will only consider O_{VR} for rest of talk.

Constraints on MeV-Scale DM

- NP scale high: \mathcal{O}_{VR} freezes out much too early to give correct relic density. ($\langle \sigma_{ann} | v_r | \rangle \sim 10^{-25} \mathrm{cm}^3/\mathrm{s}$ needed at freezeout.)
- Need additional interaction(s):

 $\bar{f}f \rightarrow e^+e^-$: overproduces 511-keV line unless $\langle \sigma_{ann} | v_r | \rangle$ velocity-dependent, $\sim v_r^2$. Possible with light U-boson (Boehm et al, Fayet....).

 $\bar{f}f \rightarrow \nu \bar{\nu}$: v_r -independent ~OK; limits on $\langle \sigma_{ann} | v_r | \rangle$ ~ $O(10^{-25} \text{cm}^3/\text{s})$ (Palomares-Ruiz & Pascoli, 2008).

• Supernova cooling (Fayet et al., 2006) and BBN (Serpico and Raffelt, 2004) OK if $m_f \gtrsim 10$ MeV.

Neutrino Detector Cross-Section

If f comprises all DM, $\Phi_{DM} \sim \frac{.3 \text{ GeV/cm}^3}{m_f} \times 230 \text{ km/s} \sim 10^8 - 10^{10}/\text{cm}^2\text{s.}$

Take $\bar{\nu}_e$ flux limit from Super-K relic supernova $\bar{\nu}_e$ search:

 $\Phi_{\bar{\nu}_e} \lesssim 1.2/\text{cm}^2 \text{s for } 20 \text{ MeV} \lesssim E_{\nu} \lesssim 80 \text{ MeV}$

(8-10 orders of magnitude smaller!)

Ratio of cross-sections:

$$\frac{\sigma_{\mathcal{O}}(m_f = E_{\nu})}{\sigma_{SM}(E_{\nu})} = \left(\frac{c}{v_f}\right) \frac{|C_{VR}|^2 v^4}{(4)\Lambda^4}$$

f nonrelativistic $\rightarrow v_f \simeq 10^{-3}c$: extra enhancement.

Results from Super-K

Preliminary Results:

$$m_f = 20 \text{ MeV} : \frac{|C_{VR}|^2}{\Lambda^4} \lesssim \frac{1}{(140 \text{ TeV})^4}$$
$$m_f = 50 \text{ MeV} : \frac{|C_{VR}|^2}{\Lambda^4} \lesssim \frac{1}{(110 \text{ TeV})^4}$$
$$m_f = 80 \text{ MeV} : \frac{|C_{VR}|^2}{\Lambda^4} \lesssim \frac{1}{(100 \text{ TeV})^4}$$

Limits weaker if f only fraction of DM.

But, very strong limits!

Conclusions

- We don't know much about DM-should consider other interactions!
- Model-independent analysis of DM interaction $\bar{f}p \rightarrow ne^+$ in ν exp'ts.
- Inelasticity of interaction allows us to probe different mass range (~ 100 MeV).
- Find one operator (comparatively!) unconstrained by DM lifetime for light DM case.
- Reach of ν exp'ts to find light DM huge (~ 100 TeV!)
- Should see if can be applied elsewhere!

DM & ν exp'ts might be telling us more than we think!