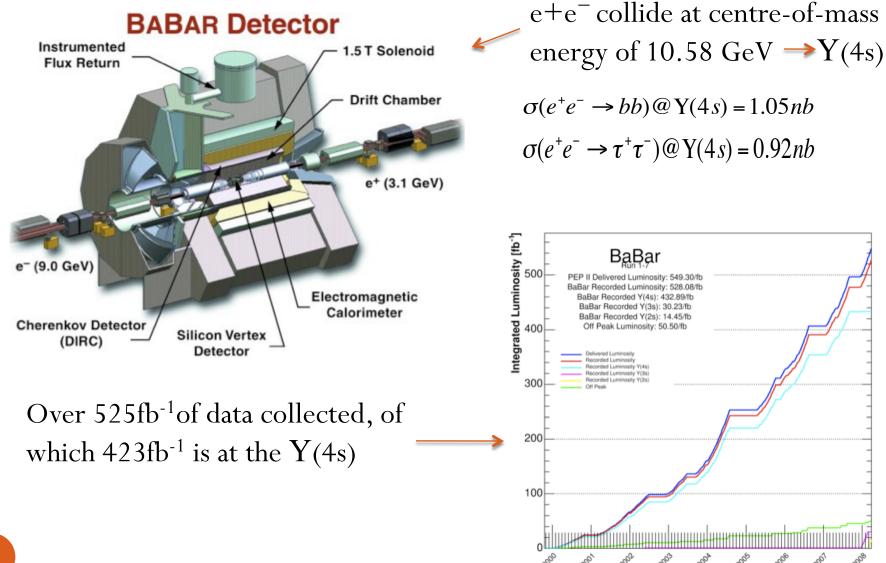

Selected topics in 7 physics from BABAR

Sudan Paramesvaran

(on behalf of the BABAR Collaboration)

2009 Meeting of the Division of Particles and Fields of the American Physical Society

Heavy Flavour Physics - Session 1 - 27th July 2009

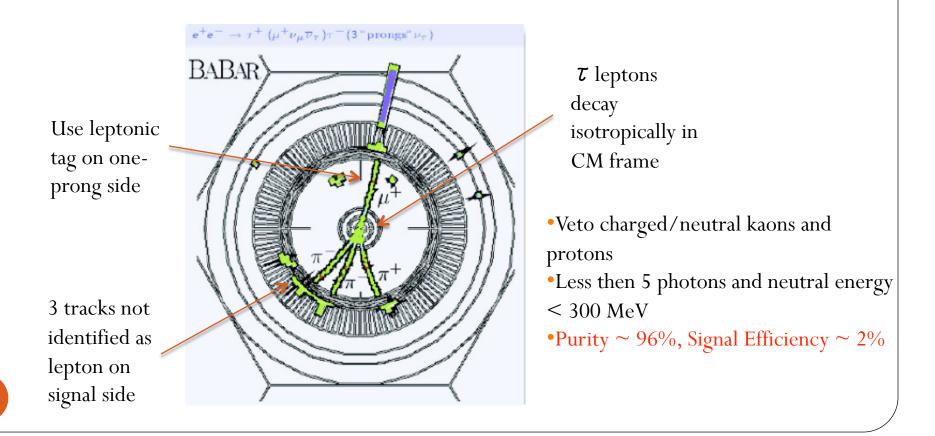

Outline

- Introduction to BaBar detector and dataset
- Selected *T* topics
 - Precise measurement of τ mass and $\tau + \tau$ mass difference

• Measurement of
$$B(\tau^- \rightarrow \overline{K^0} \pi^- \pi^0 \upsilon)$$

- Analysis of $\tau^- \rightarrow K^0_S \pi^- \nu$ mass spectrum
- Conclusions

BaBar Detector and Data Sample


τ mass measurement and $\tau + \tau^-$ difference: Motivation

- M $_{\tau}$ important for testing lepton universality
- M(τ^+) M(τ^-) important for testing CPT invariance
- Current measurements:

•
$$M_{\tau} = 1776.84 \pm 0.17 \, MeV/c^2$$
 (PDG 08)
• $CPT: \frac{M(\tau^+) - M(\tau^-)}{M_{average}} < 2.8 \times 10^{-4}$ (@ 90% C.L.)

 τ mass measurement and $\tau + \tau$ – difference: Methodology

- Use Pseudomass endpoint method (next slide) [ARGUS Phys.Lett. B292, 221 (1992)], [BELLE Phys.Rev.Lett. 99, 011801 (2007)]
- Use decay $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$ (High branching ratio ~ 8.99%)

Neutrino goes undetected. Energy and momentum of neutrino as well as the angle θ are unknown

$$M_{\tau}^2 = M_h^2 + 2(E_{\tau} - E_h)(E_h - P_h \cos\theta)$$

 $\boldsymbol{\theta}$ is set to zero to get a lower bound on M_{τ}

Pυ

$$M_{pseudo} \equiv \sqrt{M_h^2 + 2(\sqrt{s}/2 - E_h)(E_h - P_h)} \le M_{\tau}$$

6

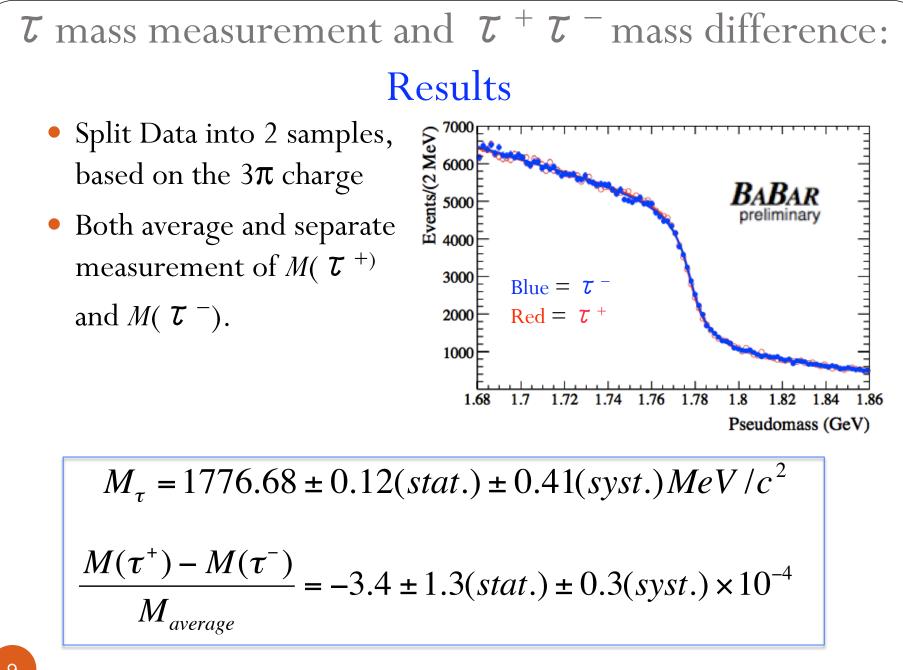
P_τ

 $E_{\tau} \approx \frac{1}{2}\sqrt{s}$

 τ mass measurement and $\tau + \tau$ – mass difference: Methodology Fit signal region in M_{pseudo} using: $F(x) = (p_3 + p_4 x) \tan^{-1} \left(\frac{x - p_1}{p_2} \right) + p_5 + p_6 x$ P_1 is the endpoint parameter: can obtain relationship between p_1 and M_{τ} using MC Events/(0.8 MeV) - 1777 (MeV) 5000 4000 +3 MeV3000 -3 MeV 2000 1000 MC 1.74 1.81 1.82 -3 -2 -1 0 2 3 1 Mg - 1777 (MeV) Pseudomass (GeV) Expect slope of unity and y-intercept of zero – however ISR/FSR

and imperfect detector resolution lead to a non-zero offset which is used to determine M_{τ} from the endpoint fit to data

 τ mass measurement and $\tau + \tau$ – mass difference: Systematic Uncertainties


• Largest uncertainty is due to underestimation of track

momenta:


Detector Parameter	$M_{ au}$ Shift (MeV)
SVT Material +20.0%	+0.31
Solenoid Field +0.02%	+0.11
FBM Field $+20.0\%$	+0.21
Correction	+0.63

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41

8

Measurement of $B(\tau^- \rightarrow K^0 \pi^- \pi^0 v)$ and analysis of $\tau^- \rightarrow K^0_S \pi^- v$ mass spectrum

Strange hadronic *T* decays Motivation

- T decays to strange hadronic final states offer a very clean environment to study the weak current ; sensitive to V_{us} .
- A fit to the $\tau^- \rightarrow K_S^0 \pi^- \nu$ mass spectrum can yield precise values for the mass and width of the dominant K* (892)
- Belle proposed that a scalar resonance, K*(800), was required to fit the the total mass spectrum.
- Their fit yielded values : (Phys. Lett. B 654, 65, (2007))

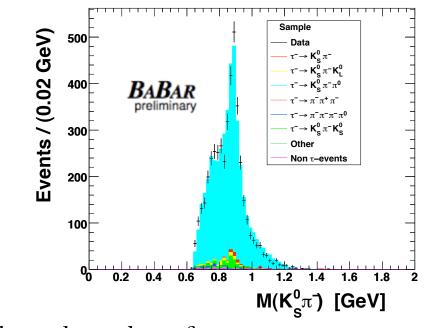
 $M(K^{*}(892)^{-}) = 895.47 \pm 0.20(\text{stat.}) \pm 0.47(\text{syst.}) \pm 0.59(\text{mod.}) \text{ MeV/c}^{2}$ $\Gamma(K^{*}(892)^{-}) = 46.2 \pm 0.60(\text{stat.}) \pm 1.0(\text{syst.}) \pm 0.7(\text{mod.}) \text{ MeV}$

[PDG Values: $M(K^{*}(892)^{-}) = 891.66 \pm 0.26 \text{ MeV/c}^{2}, \Gamma(K^{*}(892)^{-}) = 50.8 \pm 0.9 \text{ MeV}$]

Strange hadronic *T* decays Motivation

- The branching fraction for $\tau^- \rightarrow K_S^0 \pi^- \nu$ was presented at *TauO8*, *Novosibirsk* (arXiv:0808.1121(hep-ex)) $B(\tau^- \rightarrow \overline{K^0} \pi^- \nu_{\tau}) = 0.840 \pm 0.006(stat.) \pm 0.023(syst.)$
- Also wanted to consider $\tau^- \rightarrow K_S^0 \pi^- \pi^0 \nu$ shape and rate as forms an important component of fitting $\tau^- \rightarrow K_S^0 \pi^- \nu$ -large peaking background.
- Measure hadronic distributions in data and use to tune MC

Strange hadronic \mathcal{T} decays: $\tau^- \rightarrow K_S^0 \pi^- \pi^0 \nu$


Signal Selection

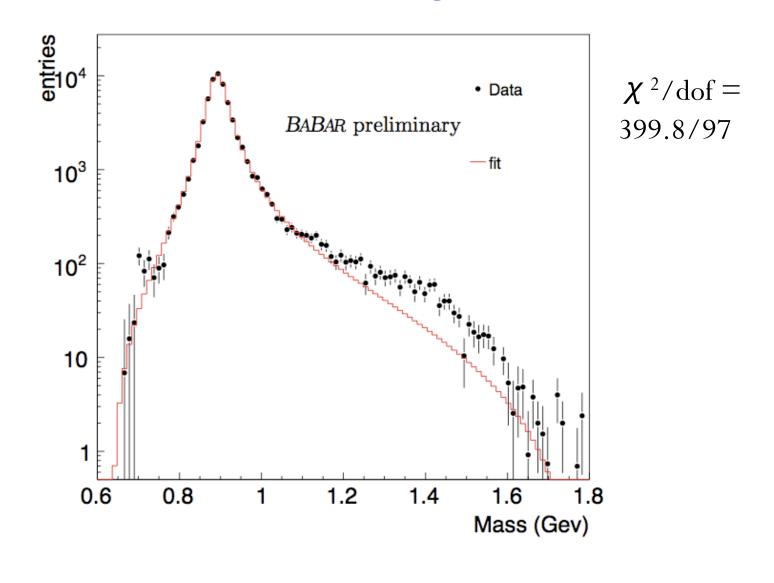
- To obtain high signal purity (~93%) –stringent selection criteria on π^0 's were used.
- Exactly one identified π^0
- Trajectory of π^0 to be within 90° of $K_s\pi^-$ momentum vector
- Energy of π⁰ to be greater than 1.2 GeV to remove large background below this threshold.

Strange hadronic *T* decays:branching fraction Results

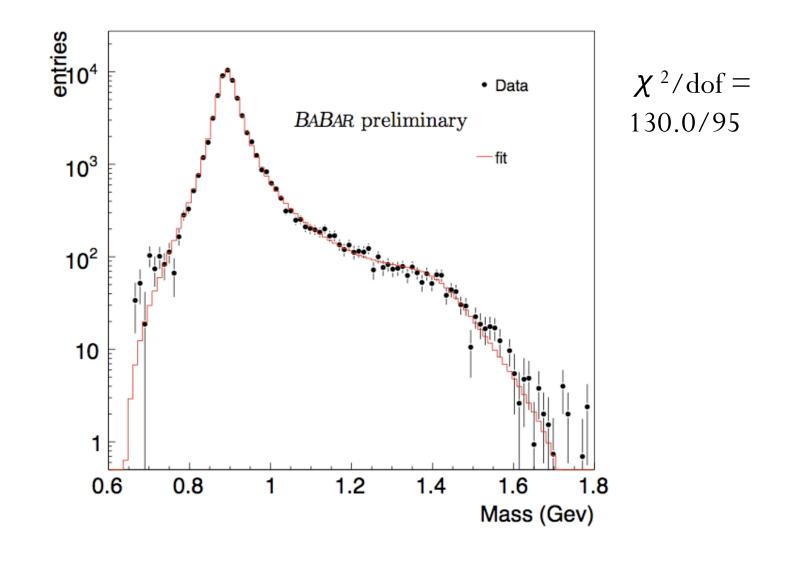
• Using this selection, MC form factors were tuned to that of data:

• Also obtain branching fraction:

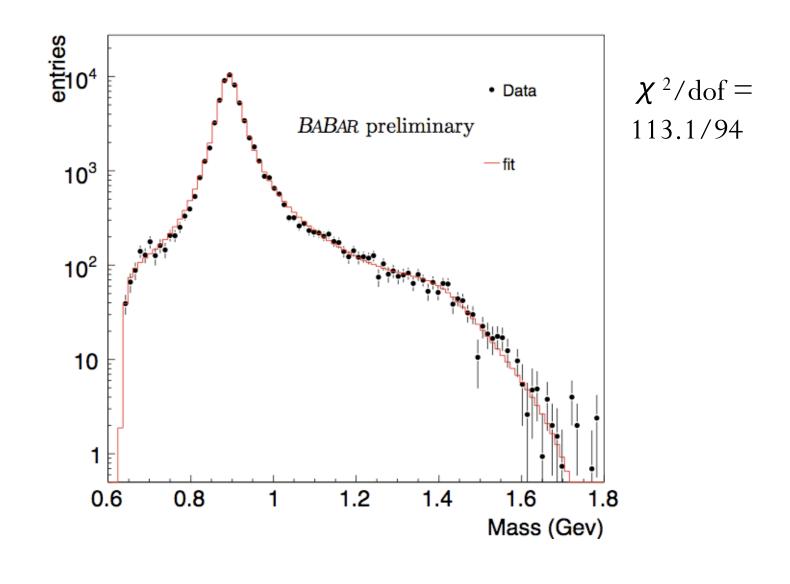
$$B(\tau^{-} \to \overline{K^{0}}\pi^{-}\pi^{0}\nu_{\tau}) = 0.342 \pm 0.006(stat.) \pm 0.015(syst.)$$

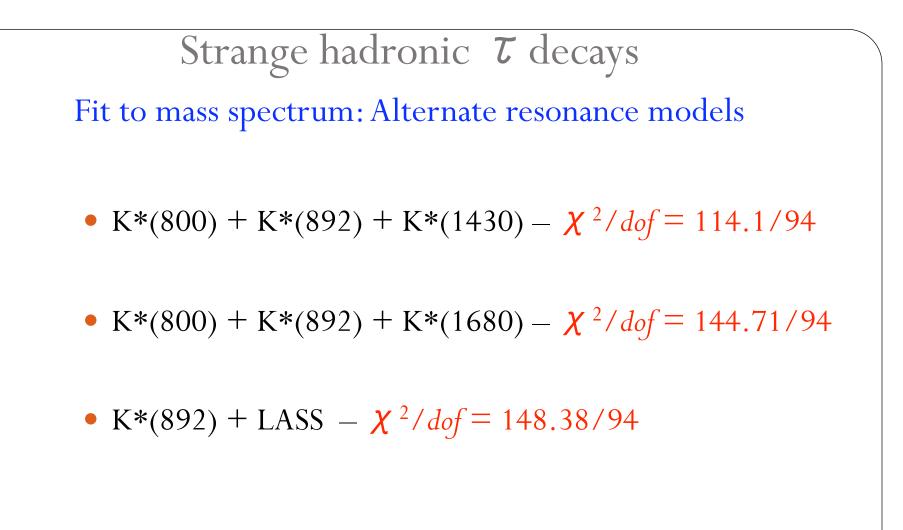

Dominant systematic contribution is π^0 efficiency systematic: 3.0% \rightarrow 0.011(syst.)

Fit to mass spectrum: Methodology


- Using tuned MC form factors a fit is performed to the invariant mass spectrum $\tau^- \rightarrow K_s^0 \pi^- v$
- A function which reflects the limited resolution and efficiency of the detector is convoluted with the signal PDF
- Terms to include the uncertainty in the rates and shapes of background modes are included in our χ^2 minimisation-background shapes/rates differ in each fit \longrightarrow background subtracted data spectra are different in each fit model
- Several different fit models are investigated

Strange hadronic
$$\mathcal{T}$$
 decays
Fit to mass spectrum: Signal PDF
• Use same model Belle used (Phys. Lett. B 654, 65, (2007)):
 $f(m; \vec{\theta}) \propto \frac{1}{s} \left(1 - \frac{s}{m_{\tau}^2}\right) \left(1 + 2\frac{s}{m_{\tau}^2}\right) P\left(P^2 |F_V|^2 + \frac{3(m_K^2 - m_{\pi}^2)^2}{4s(1 + 2\frac{s}{m_{\tau}^2})}|F_S|^2\right).$
Vector form $F_V = \frac{1}{1 + \beta + \gamma + \cdots} [BW_{K^1}(s) + \beta BW_{K^2}(s) + \gamma BW_{K^3}(s) + \cdots].$
Scalar form $F_S = \varkappa \frac{s}{M_{K^*(800)}^2} BW_{K^*(800)}(s) + \lambda \frac{s}{M_{K^*(1430)}^2} BW_{K^*(1430)}(s).$
Also try LASS
scalar form $F_S = \lambda A_s, A_s = \frac{\sqrt{s}}{P} (\sin \delta_B e^{i\delta_B} + e^{2i\delta_B} BW_{K^*(1430)}),$

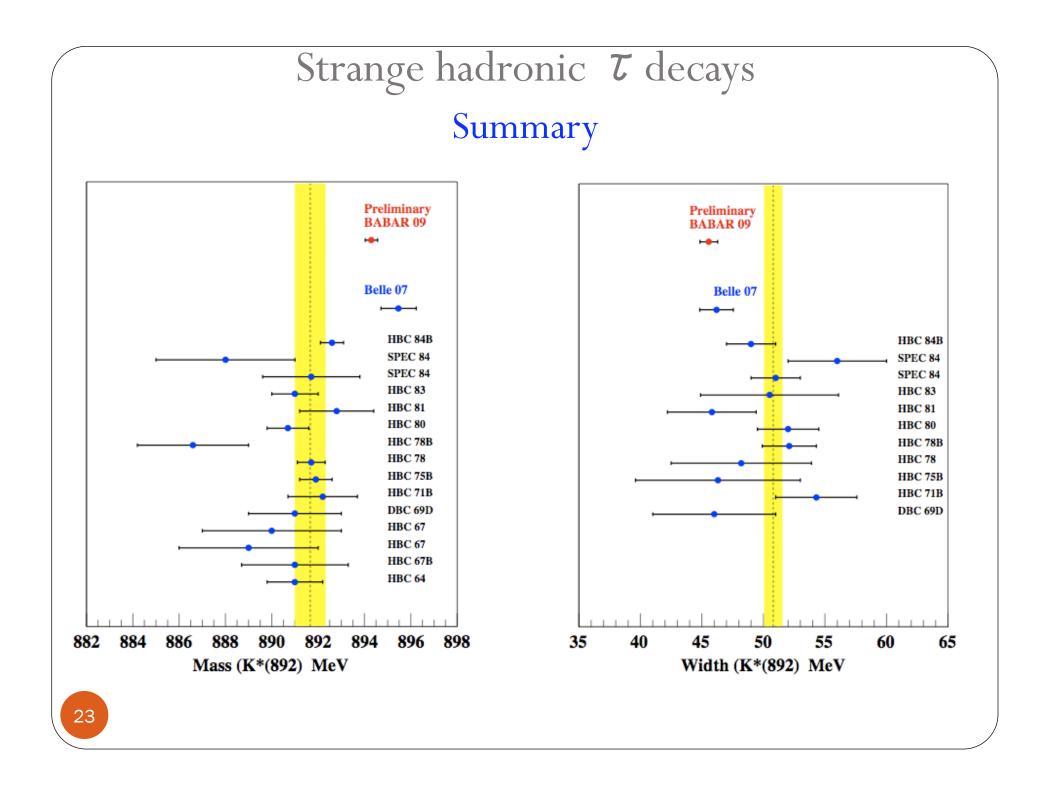

Strange hadronic *T* decays Fit to mass spectrum: Using only K*(892)



Fit to mass spectrum: Using $K^{*}(892)+K^{*}(1410)$

Fit to mass spectrum: Using K*(800) + K*(892)+K*(1410)

Fit to mass spectrum: Systematic uncertainties

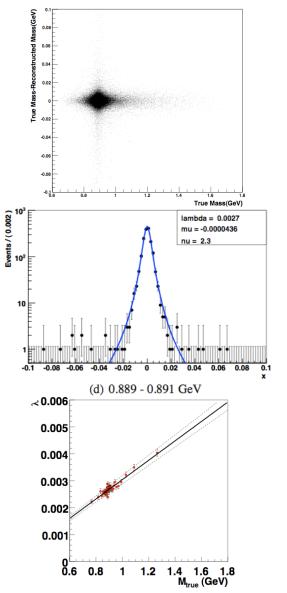

- Several sources of systematic uncertainty:
 - Vary response function parameters
 - Check dependence on model by fitting signal MC –apply additive correction – use statistical errors as contribution to systematic (dominant contribution for Mass)
 - Check dependence on different resonance models (dominant contribution for Width)
- Systematic uncertainties also enter through statistical error on fit by including adjustable parameters in model:
 - Uncertainty in background rates
 - Shape parameters for $\tau^- \rightarrow K_S^0 K_L^0 \pi^- v$

Strange hadronic
$$\mathcal{T}$$
 decays
Conclusions
• Using K*(800) + K*(892) + K*(1410) as nominal fit yields:
 $M(K*(892)^-) = 894.30 \pm 0.19(stat.) \pm 0.19(syst.)MeV/c^2$
 $\Gamma(K*(892)^-) = 45.56 \pm 0.43(stat.) \pm 0.57(syst.)MeV$
World's most precise measurements from \mathcal{T} decays

- Most accurate fit includes K*(800) but further study is ongoing to see if background processes are well understood
- Have measured:

 $B(\tau^- \rightarrow \overline{K^0} \pi^- \pi^0 \nu_{\tau}) = 0.342 \pm 0.006(stat.) \pm 0.015(syst.)$ World's most precise measurement

Preliminary results



BACKUP SLIDES

Fit to mass spectrum:Response function

- Obtain a 2D figure from MC showing Measured – True mass Vs True Mass
- Split into 1D 'slices' and project onto True mass axis
- Fit each 1D histogram with same parametric form

 Fit parameters obtained above to linear relationship

Fit to mass spectrum:All fit results

Scenario	a	b	с	d	е	f
Resonances			[K*(800)] ⊕	[K*(800)] ⊕	[K*(800)] ⊕	
	$K^{*}(892)$	$K^*(892) \oplus$	$K^*(892) \oplus$	K*(892) ⊕	$K^*(892) \oplus$	$K^*(892)\oplus$
		[K*(1410)]	{K*(1410)}	$[K^*(1430)]$		
					$[K^*(1680)]$	LASS
$M(892) ({ m MeV}/c^2)$	$894.544 {\pm} 0.171$	894.412 ± 0.187	$894.565 {\pm} 0.193$	894.673 ± 0.193	$894.393 {\pm} 0.184$	$894.855 {\pm} 0.196$
$\Gamma(892)$ (MeV)	47.673 ± 0.437	46.206 ± 0.455	45.893 ± 0.434	$45.834{\pm}0.426$	$45.491 {\pm} 0.392$	47.022 ± 0.452
$ \beta $	N/A	0.095 ± 0.006	0.075 ± 0.007	N/A	N/A	
$\arg(\beta)$	N/A	1.983 ± 0.139	1.747 ± 0.18	N/A	N/A	
$M(1410) (\text{MeV}/c^2)$	N/A	{1434.23±11.19 (PDG)}	{1425.55±12.47 (PDG)}	N/A	N/A	N/A
$\Gamma(1410)$ (MeV)	N/A	{253.80±17.68 (PDG)}	{238.76±18.85 (PDG)}	N/A	N/A	N/A
$ \lambda (1430)$	N/A	N/A	N/A	5.059 ± 0.311		N/A
$\arg(\lambda)(1430)$	N/A	N/A	N/A	$8.670 {\pm} 0.244$		N/A
$M(1430)$ (MeV/ c^2)				$[1425\pm50(PDG)]$		
$\Gamma(1430)$ (MeV)				$[270\pm80(PDG)]$		
$ \gamma (1680)$					$0.199 {\pm} 0.016$	
$\arg(\gamma)(1680)$					$3.559 {\pm} 0.184$	
$M(1680) (MeV/c^2)$	N/A	N/A	N/A	N/A	[1717±27 (PDG)]	
$\Gamma(1680)$ (MeV)	N/A	N/A	N/A	N/A	[322±110 (PDG)]	
$M(800) (MeV/c^2)$	N/A	N/A	$[841\pm30^{+81}_{-73} (BES)]$	$[841\pm30^{+81}_{-73} (BES)]$	$[841\pm30^{+81}_{-73} (BES)]$	
$\Gamma(800)$ (MeV)	N/A	N/A	$[618\pm90^{+96}_{-144} (BES)]$	$[618\pm90^{+96}_{-144} \text{ (BES)}]$	$[618\pm90^{+96}_{-144} \text{ (BES)}]$	
X	N/A	N/A	1.938 ± 0.11	$0.255 {\pm} 0.019$	$2.237 {\pm} 0.101$	
χ^2	399.778	130.044	113.049	114.151	144.711	148.375
# d.o.f.	97	95	94	94	94	94
$\chi^2/\#$ d.o.f.	4.121	1.369	1.203	1.214	1.539	1.579
$\operatorname{Prob.}(\chi^2)$	< 0.0001	0.0098	0.0880	0.0772	0.0006	0.0002

Fit to mass spectrum:systematics

Table 5: Table of systematic uncertainties in the mass and width of the $K^*(892)$ (see text	Table 5:	Table of sys	stematic un	certainties i	in the	mass and	width	of th	ie K*	(892)	(see text).
--	----------	--------------	-------------	---------------	--------	----------	-------	-------	-------	-------	-----------	----

	$M(K^{*}(892))$	$\Gamma(K^{*}(892))$
Response matrix width ($\pm 5\%$ variation of λ)	0.023	0.180
Response matrix tails ($\pm 10\%$ variation of ν)	0.030	0.280
Statistical error on fit to reconstructed MC	0.143	0.326
Without using $K^*(800)$	0.118	0.330
Total systematic (quadratic sum)	0.189	0.571