Searches for a Low-Mass Higgs in Upsilon Decays in BABAR

Yury Kolomensky UC Berkeley/LBNL

DPF2009 July 26-30, 2009 Detroit, MI

Motivation

- NMSSM models with light CP-odd Higgs
 - Solve fine-tuning problems in MSSM
 - CP-odd Higgs, A⁰, below 2m_b is not constrained by LEP

^C Large BR for Υ → γ A⁰ possible

- Dark matter axion portal
 - Nomura, Thaler, PRD**79**, 075008 (2009) and others
 - ^G Predict BR($\Upsilon \rightarrow \gamma A$)~10⁻⁶−10⁻⁵ with m_A~400-800 MeV
 - Also interesting to look in η_b region
 - Leptonic BR is expected to be small if η_b is a meson

2

Experimental Constraints

HyperCP anomaly

CLEO limits on $\Upsilon(1S) \rightarrow \gamma A^0$

H. Park et al., PRL94, 021801 (2005) Resonance-like structure in $\Sigma \rightarrow p\mu^+\mu^-$ near threshold ($m_{\mu\mu}$ =214 MeV) Small width (Γ <1 MeV) If light CP-odd Higgs, could be produced in $\Upsilon \rightarrow \gamma X(214)$.

Upsilon Resonances

• Electron-Positron collider: $e^+e^- \rightarrow \gamma^* \rightarrow \Upsilon(nS)$

For any bottomonium process $BF_{nS}=\Gamma_{nS}/\Gamma_{tot} >> BF_{4S}$, n=1,2,3 Significantly better sensitivity to new physics @ narrow resonances

4

BaBar Detector

BaBar 2008 Dataset

07/28/2009

Searches for a Light Higgs in BaBar

Key experimental signature: monochromatic photon in the Center-of-Mass (CM) frame Well-understood initial state (narrow $\Upsilon(2S)$ or $\Upsilon(3S)$) resonance) Fully or partially reconstructed final state, depending on the decay pattern of A^0

This talk:

- ✓ $A^0 \rightarrow \mu^+ \mu^-$, arXiv:0905.4539, accepted to PRL
- ✓ $A^0 \rightarrow \tau^+ \tau^-$, arXiv:0906.2219, submitted to PRL
- ✓ A⁰→invisible (light dark matter), arXiv:0808.0017, preliminary

$\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$

• Fully-reconstructed final state: 2 charged tracks, 1 photon

- I or 2 muons identified
- $E^*_{\gamma} > 0.2 \text{ GeV}$
- Loose kinematic selection requires consistency with CMS energy and momentum

Backgrounds dominated by (irreducible) $e^+e^- \rightarrow \gamma \mu^+\mu^-$ and two-body decays of ISR-produced of $\phi(1020)$, $\rho(770)$, J/ψ , Y(1S)Identify A⁰ decays by a narrow peak in $\mu^+\mu^-$ invariant mass (resolution 2-10 MeV)

Strategy for $A^0 \rightarrow \mu^+\mu^-$

- Signal extraction: ML fit in slices of invariant mass
 - ^{(☞} 1955 distinct slices from $0.212 \le m_{A0} \le 9.3$ GeV, in 2-5 MeV steps
 - So Fit to "reduced mass" $m_R = \sqrt{m_{A^0}^2 4m_{\mu}^2} = 2|p_{\mu}^{A^0}|$
 - Smooth threshold behavior, slightly shifted from m_{A0}

Results: $\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$

Expect standard normal distribution for 1955 scan points under null hypothesis Observe no significant outliers.

.

10

07/28/2009

Upper Limits: $\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$

Bayesian 90% C.L upper limits Significant constraints on theoretical models Rule out Higgs interpretation of HyperCP events Also limit

 $\mathcal{B}(\eta_b \rightarrow \mu^+ \mu^-) < 0.9\%$ at 90% C.L.

Combined results for effective Yukawa coupling f_Y $\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to l^+l^-)} = \frac{f_\Upsilon^2}{2\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2}\right)$ For $m_{A0} < 1$ GeV, this corresponds to

 f_{Y} <0.12 $f_{Standard Model}$

Axion model (Nomura,Thaler)

 $\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$

- Expect tau decays of A⁰ to be dominant above the tau threshold
- Strategy:
 - Solution Look for A⁰ decays as a narrow peak in the photon energy spectrum above $E_{\gamma}^*>0.2$ GeV
 - Select leptonic decays $\tau \rightarrow (e,\mu)\nu\nu$
 - ³ 3 final states: ee, μμ, eμ
 - Select events with exactly 2 identified leptons, one energetic photon, and large missing energy and mass consistent with tau decays
 - Therefore \mathbb{E}_{γ} and \mathbb{E}_{γ} are \mathbb{E}_{γ} and \mathbb{E}_{γ}

13

$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^- \text{Spectrum}$

Selection optimized in five large energy regions. Background dominated by irreducible $e^+e^- \rightarrow \tau^+\tau^-$

Describe background by a smooth distribution, include peaking contributions for $\chi_b(2P) \rightarrow \gamma \Upsilon(1S, 2S)$

Signal distribution: Crystal Ball PDF with low-energy tail, resolution 10-55 MeV grows with E_{γ}

Yury Kolomensky, Low-Mass Higgs in BaBar

07/28/2009

$Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}: Scan for peaks$ $Scan E_{\gamma} \text{ distribution in steps of half resolution (307 scan points in total)}$ $Simultaneous fits (binned ML) to the different \tau\tau-decay modes$

-5

10-3

10-4

 10^{-5}

 10^{-6}

Upper Limit (90% CL)

 $N_{sig}/\delta(N_{sig})/10 \text{ MeV}$

16

$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \text{invisible}$

Dominant background from $e^+e^- \rightarrow \gamma \gamma$, with one of the photons missing the EM calorimeter. Veto such events by detecting activity in the muon detector (IFR).

- Require a single photon with $E_{\gamma}^* > 2.2 \text{ GeV}$
- No charged tracks
- No additional energy in EMC above 100 MeV
- Missing momentum points to EMC
- No activity in IFR aligning with missing momentum
- Selection efficiency: $10-11\% (E_{\gamma}^{*}>3 \text{ GeV}),$ $\sim 20\% (E_{\gamma}^{*}<3 \text{ GeV})$

$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \text{invisible} : \text{Results}$

Summary

- No signal of a light scalar particle (e.g. CP-odd Higgs) in radiative decays of $\Upsilon(2S)$ and $\Upsilon(3S)$ in $\mu^+\mu^-$, $\tau^+\tau^-$, or invisible final states
 - Set upper limits that rule out much of available parameter space; most stringent constraints to date
 - Rule out CP-odd Higgs interpretation of HyperCP anomaly
 - Also set a limit on dimuon and $\tau^+\tau^-$ BF of η_b

$$\begin{array}{c} \mathcal{B}(\eta_b \to \mu^+ \mu^-) < 0.9\% \\ \mathcal{B}(\eta_b \to \tau^+ \tau^-) < 8\% \end{array} \right\} @ 90 \text{ C.L.}$$

Consistent with mesonic interpretation

First ever measurements of the exclusive η_b decays

• Publications

- ^G arXiv:0905.4539 (A⁰→ $\mu^+\mu^-$), preliminary, accepted to PRL
- ⁽³⁾ arXiv:0906.2219 (A⁰→τ⁺τ⁻), preliminary, submitted to PRL
- ⁽³⁾ arXiv:0808.0017 (A⁰→invisible), preliminary

NMSSM Predictions for $\Upsilon \rightarrow \gamma A^0$ vs BaBar Limits

Related Talks at DPF2009

- Search for Y→invisible Decays [©] YGK, LE-BSM Session (Thu, 7/30)
- Lepton Universality in Upsilon Decays
 ⁽³⁾ Elisa Guido, LE-BSM Session (Thu, 7/30)
- Lepton Flavor Violation Searches in Tau and Upsilon Decays

Swagato Banerjee, LE-BSM Session (Fri. 7/31)

Backup

No significant peak at m(A0)=0.214 GeV Set a stringent upper limit:

 $f_{\Upsilon}^2(m_{A^0} = 0.214 \,\text{GeV}) < 1.6 \times 10^{-6} \text{ at } 90\% \text{ C.L}$

Significance Calculation

• Need to take into account the "number of samples"

Generally, $P_{Nsample}(\chi^2) ≈ N_{sample}P_1(\chi^2)$

- Need to determine the number of independent samples
 - Look at correlation between adjacent scan points

Toy Distribution of Maximum S

Generate 10⁸ toy experiments with 1966 bins: normal distribution for each bin, adjacent bins correlated by 88% Typical trial factor ~1500