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Electroweak Parameters

LEP & SLD Collaborations, 
Physics Reports 427, 257 (2006)

Precision measurement possible at Tevatron
CDF & DØ have most precise measurements
Most precise measurement from CDF
Measured at the Tevatron to 0.75% precision

Overconstrained theory

3 parameters at tree level (couplings & vev)

Precise measurements probe loop couplings
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W Mass as a Loop-Level Probe

• mW receives contributions from top (∝mt
2) and Higgs (∝ln mH)

– And any new particle with weak charge

– Sensitivity currently limited by experimental uncertainty on mW

Discovered
Awaiting discovery

 mW
2 = παEM

√2GF (1 - mW
2/mZ

2)(1 - Δr )

Tree level: mW = 79.964 ± 0.005 GeV

Measurement: mW = 80.399 ± 0.023 GeV
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W Boson Mass Measurements
• Published measurements give combined precision of 25 MeV

– Preliminary DØ result is world’s most precise single measurement

• Future hadron-collider measurements promise <10 MeV precision
– Expect next measurements to be more precise than the world average

• CDF: 2.3 fb-1, DØ: 5 fb-1 

– Requires exquisite understanding of W & Z production
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W & Z Production at Hadron Colliders

• Many components enter mW measurement
Initial state radiation gives boson a boost

Parton momenta determine boson’s longitudinal momentum

V-A coupling affects angular distributions

Final state radiation reduces lepton momentum
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Measuring mW at a Hadron Collider

• Theoretical inputs:
– Details of W production and decay 

• Experimental inputs:
– In situ calibration of response to l± and ν

• Only transverse momenta used in mass fit 
mT

2
 = 2pl

T pνT (1 - cos Δφ)

CDF Collaboration, 
PRL 99, 151801 (2007), 
PRD 77, 112001 (2008)
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W Boson Production

• Parton distribution functions
– Affect observed mT distribution

– Intersection of theory and experiment 
• Wide set of data used to fit for function parameters at given Q2

• Higher Q2 obtained using DGLAP equations

– New Tevatron results improving PDF accuracy

l±

ν

l±

ν

x f (x,Q0) = A0xA1(1-x)A2 e(A3)x 

  × (1+A4x)A5

z
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W Boson Production

• Parton distribution functions
– W boson charge asymmetry
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W Boson Production

• Parton distribution functions
– W boson charge asymmetry

– New results not yet incorporated

CDF Collaboration, 
PRL 102, 181801 (2009)

DØ Collaboration, 
PRL 101, 211801 (2008)
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PDF Issues

• Input data sets generally not consistent within uncertainties
– Overall uncertainty inflated to cover range of data
– Should mW measurements rescale 90% CL δmW to 68% CL?

• Spread of data on valence parton distributions mostly Gaussian

• Assumptions required in form of PDFs
– Would reasonable alternative forms give significant uncertainty?

• Usefulness of multiple PDF sets (CTEQ, MSTW, NNPDF)

• How can we make the uncertainty more robust?
– mW measurement using forward leptons

– Fit mass in two lepton rapidity bins as a cross-check?
– Uncertainty from (e.g.) Tevatron data alone?

• QED PDFs?
M. Lancaster and

 D. Beecher,
Milan Workshop
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Modelling W Boson pT

• Non-perturbative regime most relevant for mW measurement

αs affects slope

RESBOS prediction based on resummation

dσ/(ds dpT dy) ∝ ∫d2b eipTb W(b, s, x) + Y(pT, s, x)

Calculated at 
fixed order

Non-perturbative component
WNP uses BLNY form

WNP = exp[g1 - g2 ln(Q/2Q0) - g1g3ln(x1x2)]b2

g2 affects position of the peak

CDF Run II: in situ determination of g2 = 0.685 ± 0.048 (CTEQ6M) using Z→ll data

 Consistent with prior Drell-Yan data (CTEQ3M)

 Other gi parameters correlated: varying g3 has negligible effect on mW
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Z Boson pT

• DØ has performed dedicated measurement of g2

– Optimizes sensitivity using projected boson pT

– Measure 0.63 ± 0.02 with CTEQ6.6
• Quote PDF uncertainty of 0.04
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Boson pT Issues

• Theory required to transfer measured pT
Z to pT

W

– Is the RESBOS parametrization sufficient?

• Is uncertainty covered by RESBOS g2 parameter?

– αs?

– Perturbative components?

– Correlation with PDFs?

– QED ISR?
– Diffractive boson production?

• pT
l and pT

ν fits provide important cross-check

– More sensitive to pT
W

M. Lancaster and
 D. Beecher,

Milan Workshop
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Modelling Photon Radiation

• Dominant effect on mW due to FSR
– O(150 MeV) effect

• Run II measurements add an FSR model to RESBOS

– DØ: Use PHOTOS (resummed calculation), compare to WGRAD (O(α))

– CDF: Add photons from a histogram (Eγ/El vs ΔR) extracted from WGRAD

• Sources of quoted uncertainties:
– PHOTOS vs WGRAD differences (almost certainly an overestimate)

– Full O(a) WGRAD vs FSR WGRAD (statistics-limited test at CDF)
– Infrared cutoff (also statistics-limited)

• Thorough investigation with HORACE in progress at CDF



July 28, 2009 C. Hays, Oxford University 17

HORACE Model and Effect on mW
• HORACE generator reweights leading logarithms to reproduce αn

– Hard radiation scale factor: 

• FH = 1 + (|M1|2 - |M1,LL|2) / |M1,LL|2 

– Soft and virtual scale factor:

• FSV = 1 + (Cα - Cα,LL)

– Factors derived from exact O(α) calculation:

• dσα = FSV ( 1 + Cα,LL) |M0|2 dΦ0 + FH |M1,LL|2 dΦ1 

HORACE + fast 

CDF simulation

I. Bizjak, Milan Workshop
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Higher Orders

• Inclusion of leading logarithms reduces mW shift
– Next order of corrections suppresses radiation

• Have investigated HORACE scheme dependence
– Calculation implemented in Gµ and α schemes

• Truncate perturbative series in different ways

<1 MeV effect for full (“matched”) HORACE I. Bizjak, 
Milan Workshop
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Photon Radiation Issues
• Unclear how to obtain uncertainty on HORACE prediction

– Full NNLO calculation would be a useful test
– Should we compare with other generators (e.g., WINHAC)?

– Are there uncertainties due to missing diagrams?

• Should determine relevance of higher multiplicity radiation
– Radiation of two hard (>100 MeV) photons

– Radiation of electron-positron pairs

• Not using generators with combined QED & QCD radiation
– Currently custom-produce final-state QED on top of RESBOS or vice versa

– Useful to have a single generator for both
• HORACE authors have added MC@NLO 
• RESBOS authors have added WGRAD (“RESBOS-A”)

– Do mixed QED and QCD terms matter?

• Uncertainty mitigated by calibrating lepton momentum with Z→ll
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W Polarization and Decay

• Decay angle determines transverse fraction of momentum
– Distribution different for valence and sea quarks

– Parameters for differential cross section calculated to NLO in QCD

CDF moments analysis: 

RESBOS agrees with DYRAD in high-pT region

Issues:

– What is the polarization uncertainty at low pT?

– Should resummations be separated by helicity?
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Charged Lepton Calibration
• CDF

– Muon calibration includes J/ψ→µµ, Υ→µµ resonances
• 600k J/ψ and 35k Υ candidates in 200 pb-1

– Mass fits sensitive to energy loss model
• Bethe-Bloch mean

• Landau distribution improves model of peak shape

– Non-trivial to preserve the mean

– In situ energy loss tune using scale vs <1/p>
• Scale factor for Bethe-Bloch mean

– Shape of peaks sensitive to intrinsic resolution and multiple scattering
• Add tails to multiple scattering based on low-energy muon data

– Systematics-dominated despite careful modelling of J/ψ, Υ peaks
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Charged Lepton Calibration

• CDF
– Electron calibration transfers track calibration to calorimeter with W 

electrons 

– Peak position sensitive to soft radiation in tracker
• Tune tracker material using tail of distribution
• Rely on theoretical model for radiation spectrum

• Model quantum effects for low-energy radiation: O(50 MeV)

– Combine with Z boson peak
• Important cross-check

• DØ
– Calibration relies on Z boson peak

• What effects do not cancel when transferring scale from Z to W?
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Recoil Calibration

• In situ calibration of detector response to ν
– Develop model using GEANT and randomly collected events (zero bias)

– Tune parameters with Z → ee events

– Response to hadrons (< 1) results in measured momentum imbalance
• Well modeled by CDF & DØ fast simulations
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Mass Fits

• CDF and DØ measurements model fit distributions well

 mW = 80.401 ± 0.021stat ± 0.038sys GeV
       = 80.401 ± 0.043 GeV 

 mW = 80.413 ± 0.034stat ± 0.034sys GeV
       = 80.413 ± 0.048 GeV 

Combined Tevatron precision 
should be better than LEP 
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World-Average mW

• Tevatron average not yet available

• Gfitter group has calculated its own world-average mW

– mW = 80.399 ± 0.023 GeV : O(10%) reduction in uncertainty

Gfitter Group, 
EPJC 60, 543 (2009)

1.4% probability to find such a deviant outlier
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Constraints from mW

• Electroweak measurements prefer light Higgs, heavy SUSY
– Some tension in both cases

• Something else?

• Need increased precision

2008 mW
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mW at the LHC

• ATLAS predicts a 7 MeV measurement with 10 fb-1 of data
– No recoil uncertainty included 

• Assumed negligible for pT fit 

– CDF uncertainty: 17 MeV (pT fit), 11 MeV (mT fit)

• Due to cut on recoil & uncertainty on recoil scale

– Expect 45 million W events, 4.5 million Z events
• Have statistics to parametrize recoil

• Hard to predict precision without data

• Expect PDF uncertainties to be important
– Will have more statistics to measure Z rapidity 

  and W charge asymmetry 

• Will have statistics for <10 MeV measurement
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Measurement of sin2θW

• Chiral weak coupling produces angular asymmetry in Drell-Yan
– dσ / dcosθ ∝ 1 + cos2θ + AFB cosθ   [ AFB = f(vf, af, s) ]

– Vector & axial couplings: 

• vf = I3
L - 2e sin2θW; af = I3

L

– Measurement provides sensitivity to sin2θW

sin2θW = 0.2326 ± 

   0.0018stat ± 
   0.0006sys

pp
e+

e-

θ

sin2θW = 0.23149 ± 

   0.00013

DØ Collaboration, 
PRL 101, 191801 (2008)

c.f. SM prediction:



July 28, 2009 C. Hays, Oxford University 31

Summary

• mW measurement most important for constraining new physics

• Measurements driving improvements in W & Z modelling
– CDF & DØ have the two most precise measurements
– Next measurement will have similar theory and experimental uncertainties

• New Tevatron results and theoretical progress will reduce input uncertainties
• Expect measurement to be more precise than the world average

– Should achieve <10 MeV precision from hadron colliders

• Potential for sin2θW precision measurement at the Tevatron
– Much work to be done to demonstrate scaling of uncertainties and 

sensitivity of muon channel

• Exciting time to work on Electroweak physics at hadron colliders
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If there is no SM Higgs...

...who will exclude it first?


