

Recent Results from HERA

S. Glazov

DESY

Detroit, 30 July 2009.

1

Deep Inelastic *ep* scattering

Neutral scattering cross section:

$$\frac{\mathrm{d}^2\sigma^{\pm}}{\mathrm{d}x\mathrm{d}Q^2} = \frac{2\pi\alpha^2 Y_+}{Q^4 x}\sigma_r^{\pm} =$$

$$=\frac{2\pi\alpha^2 Y_+}{Q^4 x}\left[F_2(x,Q^2)-\frac{y^2}{Y_+}F_L(x,Q^2)\mp\frac{Y_-}{Y_+}xF_3\right]$$

where factors $Y_{\pm} = 1 \pm (1 - y)^2$ and y^2 define polarization of the exchanged boson and $y = Q^2/(Sx)$.

Kinematics of inclusive scattering is determined by Q^2 and Bjorken *x*. At leading order:

$$F_2 = x \sum e_q^2(q(x) + \bar{q}(x))$$

$$xF_3 = x \sum 2e_q a_q(q(x) - \bar{q}(x))$$

$$\sigma_{e^+p}^{CC} \sim x(\bar{u} + \bar{c}) + x(1 - y)^2(d + s)$$

$$\sigma_{e^-p}^{CC} \sim x(u + c) + x(1 - y)^2(\bar{d} + \bar{s})$$

xG(x) — from F_2 scaling violation, jets and F_L

HERA with $\sqrt{S} = 318$ GeV is a unquie tool to measure the proton structure.

HERA and LHC kinematics

 x_1 , x_2 are momentum fractions. Factorization theorem states that cross section can be calculated using universal partons × short distance calculable partonic reaction.

$$x_{1,2} = \frac{M}{\sqrt{S}} \exp(\pm y)$$

Notation clash: y – rapidity (LHC) vs y – inelasticity (HERA, $Q^2 = S xy$). For $M \sim 100$ GeV and central rapidity proton structure information is provided by HERA.

HERA, H1 and ZEUS. 1992-2007.

Sun Jul 01 12:01:15 2007 Current-e [mA], Lifetime-e [h]

HERA-II upgrade provides better instantaneous luminosity and longitudinal beam polarization.

Nominal $E_p = 920$ GeV, $E_e = 27.5$ GeV. Special low proton beam energy runs $E_p = 460, 575$ GeV to measure F_L

DIS Event Reconstruction

Both the scattered electron and hadronic final state can be used to reconstruct event kinematics.

Structure Function F_2 at low x

 $F_2(x, Q^2)$ shows strong rise as $x \to 0$, the rise increases with increasing Q^2 .

F_2 Scaling violation at low x

Large scaling violation at low x — large gluon density. Good agreement between the data and theory.

Data precision allows for local determination of $\partial F_2/\partial \ln Q^2 \sim \alpha_S G$. Note that there is a strong anti-correlation between the data points. Good consistency between data and QCD fit (even for extrapolation to low Q^2).

- For *x* < 0.01 *xS* and *xG* dominate.
- Very rapid evolution for *xS* and *xG*.
- Analysis based using the H1 data only.

Combination of HERA data

Average H1 and ZEUS data before applying QCD analysis.

Achieved by fitting σ_r values, global normalizations and the correlated systematic uncertainties.

$$\sigma_r^{\pm} = F_2 - \frac{y^2}{Y_+} \mp \frac{Y_-}{Y_+} x F_3$$

Experiments cross calibrate each other: total uncertainties reduced, sometimes better than $\sqrt{2}$.

Combined HERA data

Combination of published H1/ZEUS data for CC,NC, $e^{\pm}p$ data.

$$\chi^2/dof = 637/656$$

HERA data approaches precision of fixed target experiments. Combined data vs theory: stringent test of DGLAP evolution.

PDFs extraction

Sea *S* and gluon *g* are far more important at low *x*. Mind the $\times 0.05$ scale factor for them.

Fit to combined H1/ZEUS data returns much more precise xG(x) compared to global fits of CTEQ and MRST: improved data precision and also different data errors treatment.

Determination of F_L requires measurement at high $y \approx 1 - \frac{E'_e}{E_e}$ H1 estimates background directly from data using the measured charge of the electron candidate.

Published H1 and ZEUS F_L results

DESY-09-046, to be published in Phys. Lett. B

Both H1 and ZEUS collaborations published their first measurements of F_L . ZEUS also extracts F_2 without any assumption on F_L .

H1 extension to low Q^2

Using the backward silicon tracker, H1 extended the measurement to low Q^2 .

Using the backward silicon tracker, H1 extended the measurement to low Q^2 .

H1 measurements cover $2.5 \le Q^2 \le 800 \text{ GeV}^2$ and $0.00005 \le x \le 0.04$ range For $Q^2 \ge 10 \text{ GeV}^2$, agree well with H1PDF 2009 prediction.

F_L measured at $Q^2 < 100 \text{ GeV}^2$

MSTW and H1PDF 2009 predictions use the same scheme to calculate F_L . Data agree better with calculation of CTEQ.

Charged Current Double Differential Cross Section

Recently ZEUS published analysis of the complete e^-p sample. CC data allows to measure D, \overline{U} and U, \overline{D} separately.

(DESY-08-177, accepted by EPJ C)

Charged Current Cross Section

CC cross section is linearly proportional to the degree of the longitudinal beam polarization:

$$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} = [1 \pm P_e] \frac{G_F^2}{2\pi x} \left[\frac{M_W^2}{Q^2 + M_W^2} \right]^2 \phi_{CC}^{\pm}$$

Consistent with no right-handed weak currents

NC Cross Section Polarization Dependence

Neglecting pure Z exchange term, generalized F_2 :

$$\tilde{F}_2^{\pm} \approx F_2 + k(-v_e \mp Pa_e)F_2^{\gamma Z}$$

where
$$k = \frac{1}{4 \sin^2 \theta_W \cos^2 \theta_W} \frac{Q^2}{Q^2 + M_Z^2}$$

At leading order

$$F_2^{\gamma Z} = x \sum 2e_q v_q (q + \bar{q})$$

(DESY-08-202, accepted by EPJ C, Complete HERA-II sample).

NC Cross Section Polarization Dependence

Polarization asymmetry

$$A^{\pm} = \frac{2}{P_R - P_L} \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)} \approx$$

$$\approx \mp k a_e \frac{F_2^{\gamma Z}}{F_2}$$

measures directly NC parity violation.

Flavor Decomposition for processes at the LHC

We want to have

predictions for W^+ , W^- , Z with the main experimental input from F_2^{em} :

- For LHC, more important *d*, *s* quarks
- For *Z*, significant contribution from *b*.

Measurement of xS(x) by HERMES

Measure K^{\pm} prduction on deuteron target compared to inclusive DIS.

$$S(x) \int D_S^K(z) dz \approx Q(x) \left[5 \frac{d^2 N^K(x)}{d^2 N^{DIS}(x)} - \int D_Q^K(z) dz \right]$$

Based on flatness of $dN^{K}(x)/dN^{DIS}(x)$ for high *x*, assume S(x) = 0 for x > 0.15, measure the fragmentation function $\int D_{O}^{K}(x)dz$.

Subtracting the contribution of $\int D_Q^K(x)dz$, evolving to $Q^2=2.5$ GeV² and using an external value of the fragmentation function $\int D_S^K(x)dz$, xS(x) distribution is obtained:

Measurements of $F_2^{c\bar{c}}$

Different methods to measure $F_2^{c\bar{c}}$

- Displaced secondary vertex (lifetime tag).
- Tagging by measuring *D** meson production.

Methods have different experimental/theoretical uncertainties: combine taking into account correlations, significant reduction of the uncertainty.

Measurements of c, b using displaced vertex.

Larger contribution to σ_r allows to determine $\sigma_r^{c\bar{c}}$ more precisely than $\sigma_r^{b\bar{b}}$. Data agree well with H1PDF2009/MSTW08 predictions.

Summary

- HERA enables precise determination of PDFs for the LHC kinematic range.
- DGLAP evolution works very well so far.
- More information will come with finalization of HERA analyzes, combination of H1/ZEUS data, from the measurements of heavy flavors and of F_L .