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CP Violation in Kaon System
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If CPT: f ≈ f′

Re(ε′/ε) → direct CP violation

Im(ε′/ε) → CPT violation
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Previous Results

Re(′/) = [20.7 ± 1.48(stat) ± 2.39(syst)] × 10-4

Data from 1996 

and 1997
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Re(ε′/ε) Uncertainties (2003)

Statistical 

Uncertainty: 

1.5 × 10-4
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The KTeV Detector

 Movable active 

regenerator to provide a 

coherent mixture of KL 

and KS and to veto 

scattered kaons

 Charged spectrometer to 

reconstruct K → +

decays

 CsI calorimeter to 

reconstruct K → 00

decays

Vacuum 

Beam (KL)

Regenerator Beam 

(KL + rKS)
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The KTeV Detector

 Spectrometer
– 4 drift chambers

 hexagonal cell geometry

 2 planes each in x and y

– Dipole magnet
 ~412 MeV/c kick in x

– Calibrated using data and the known kaon mass
 position resolution ~80 mm 

 momentum resolution ~0.3%

 absolute momentum scale ~0.01%

 CsI Calorimeter
– 3100 CsI crystals

 small blocks 2.5 × 2.5 × 50 cm3

 large blocks 5.0 × 5.0 × 50 cm3

– Calibrated using in-situ laser system and 
momentum analyzed electrons from Ke3 decays
 position resolution 1.2 – 2.4 mm

 energy resolution ~0.6%

 absolute energy scale ~0.05% CsI Calorimeter
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K →  Analysis

Reconstructed Mass

Transverse Momentum
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Photon Pairing

 Must determine which photons are 
from the same pion decay

 Pair photons and calculate z for each 
pair using pion mass as constraint

 Only correct pairing will yield 
consistent z for both pairs

 Consistency of measured z 
quantified by pairing chi-squared 
variable

 Choose incorrect pairing for 0.007% 
of 20 events
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Final Energy Scale

z vertex at regenerator edge

Before

After

z shift to match data to MC

1999:

z shift = 2.7 cm

energy scale 

adjustment = 0.05% 
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K → 00 Analysis

Reconstructed Mass
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Monte Carlo Simulation

 MC used to make 

acceptance correction and 

simulate backgrounds to 

signal modes

– simulates kaon generation, 

propagation, and decay

– simulates detector geometry 

and response

– includes the effect of 

“accidental” activity by 

overlaying data events from 

accidental trigger



13

Improvements to MC

 More complete treatment of particle interactions with 
matter

– Ionization energy loss

– Improved Bremsstrahlung

– Improved delta rays

– Hadronic interactions in drift chambers

 Improved electromagnetic shower simulation
– Shower library binned in incident particle angle

– Simulate effects of dead material (wrapping and shims) in 
CsI calorimeter
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Improvements: Transverse Shower 
Shape

2003: Includes transverse energy correction to match data and MC

Current: No transverse energy correction required

2003 current

2003

current

Fraction of energy per CsI block

Data/MC Ratio
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2003

Current

2003

Current

Improvements: Reconstructed Energy
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Improvements: Energy Linearity

Data Data

MC MC

Data

MC

Data

MC

2003                   Current 2003                   Current

Mass vs. Energy Mass vs. Photon Angle
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Improvements: Energy Scale
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Backgrounds

 Scattering backgrounds
– Scattering in defining collimator

– Diffractive and inelastic scattering in regenerator treated as background

– Characterized using  events with large pT
2

– Common to charged and neutral signal modes

– Level higher in neutral mode because no cut on pT
2

 Use RING variable instead 

 Non  backgrounds
– Semileptonic decays in charged mode

– K → 30 decays and hadronic production in neutral mode

 Backgrounds simulated by MC, normalized to data sidebands, and 
subtracted

 Total background levels
– ~0.1% in charged mode

– ~1% in neutral mode
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Uncertainty from Acceptance

 Quality of MC simulation 
evaluated by comparing 
vacuum beam z vertex 
distributions between 
data and MC

 Bias on Re(ε′/ ε) given 
by sDz/6

– s is slope of data-MC 
ratio

 Dz is difference 
between mean z value 
for vacuum and 
regenerator beams

 Use  and 000

slopes to determine 
systematic uncertainty
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 Use MK vs EK plot to 
determine distortion which 
provides best data-MC match

 0.1%/100 GeV nonlinearity 
applied to data for 1997 and 
1999

 0.3%/100 GeV nonlinearity for 
1996

 Change in Re(′/)

– 1996: -0.1 × 10-4

– 1997: -0.1 × 10-4

– 1999: +0.2 × 10-4

 Systematic error: ±0.15 × 10-4

Nominal 

data

MC

Distorted 

data

Uncertainty from Energy Non-linearity
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Uncertainty from Energy Scale

±0.45 × 10-4

±0.59 × 10-4

±0.82 × 10-4
Total 

uncertainty:

±0.65 × 10-4
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Uncertainty from Energy Scale

±0.45 × 10-4

±0.59 × 10-4

±0.82 × 10-4
Total 

uncertainty:

±0.65 × 10-4
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Uncertainty from Energy Scale

±0.45 × 10-4

±0.59 × 10-4

±0.82 × 10-4
Total 

uncertainty:

±0.65 × 10-4
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Systematic Uncertainties in Re(ε′/ ε)

Reduced 

from 1.47

Statistical 

Uncertainty: 

1.1 × 10-4
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Results

The final KTeV measurement 

of Re(ε′/ε) . . .
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Results: Re(ε′/ ε) 

Re(ε′/ ε) = [19.2 ± 1.1(stat) ± 1.8 (syst)] × 10-4

Re(ε′/ ε) = (19.2 ± 2.1) × 10-4

Probability = 13%

KTeV 2003: Re(ε′/ ε) = [20.7 ± 1.5(stat) ± 2.4 (syst)] × 10-4
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Results: Re(ε′/ ε) Crosschecks

Run Ranges

Half Samples

Momentum Bins
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Kaon Parameters: z-binned fit

 Fit for Dm, tS, f, Re(ε′/ε), 
Im(ε′/ε)

 Systematic uncertainties 
evaluated using same 
methods as Re(ε′/ε) analysis

 Significant reduction in 
systematic uncertainties for 
f and Df

– Improved measurements of 
regenerator properties

– Nuclear screening effects 
(f)

– Energy scale (Df)

 CPT assumption applied a 
posteriori

Φ+- ≈ Φε + Im(ε′/ε)

Φ00 ≈ Φε - 2Im(ε′/ε)

ΔΦ = Φ00 – Φ+-≈ -3Im(ε′/ε)
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2
tan 1f



29

Results: z-binned Fit

CPT assumption applied:

Δm = (5269.9 ± 12.3) × 106 ħs-1

tS = (89.623 ± 0.047) × 10-12 s

No CPT assumption:

Δm = (5279.7 ± 19.5) × 106 ħs-1

tS = (89.589 ± 0.070) × 10-12 s
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Results: Δm and tS

KTeV 2003: Dm = (5261 ± 13) × 106 ħs-1 KTeV 2003: tS = (89.65 ± 0.07) × 10-12 s
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Results: z-binned fit

KTeV + NA48

f = (43.86 ± 0.63)°

f - fSW = (0.40 ± 0.56)°

Df = (0.30 ± 0.35)°
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Results: CPT Tests

Consistent with CPT symmetry

KTeV 2003: f  (44.1 ± 1.4)° KTeV 2003: Df  (0.39 ± 0.50)°
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KTeV Final Results

 Re(ε′/ ε) = (19.2 ± 2.1) × 10-4

 Δm = (5269.9 ± 12.3) × 106 ħs-1

 tS = (89.623 ± 0.047) × 10-12 s 

 f = (43.86 ± 0.63)°

 f  fSW = (0.40 ± 0.56)°

 Df = (0.30 ± 0.35)°

Assuming CPT

No CPT assumption
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Extra Slides
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Backgrounds

**1999 backgrounds (other years vary slightly)**
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K →  Backgrounds
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K → 00 Backgrounds

Vacuum Beam Regenerator Beam
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K → 00 Backgrounds

Vacuum Beam Regenerator Beam



39

PDG: f+-

KTeV 2003
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Regenerator Transmission

 Transmission measured from data using KL → +-0 decays

 Dedicated trigger in 1999 improved statistical precision of 
measurement
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Screening corrections

 Screening corrections 

use elastic and inelastic 

screening models

 Check corrections by 

fitting regeneration 

amplitude in 

momentum bins

 Good agreement at low 

momentum
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Screening corrections

 For p binned fit, evaluate 
regeneration phase using 
Derivative Analyticity 
Relation (DAR)

 Perform fit which floats the 
regeneration phase in p 
bins, DAR agrees well with 
data

 Evaluate systematic 
uncertainty by comparing 
inelastic screening 
correction (nominal) to direct 
fit to data using DAR for the 
phase


