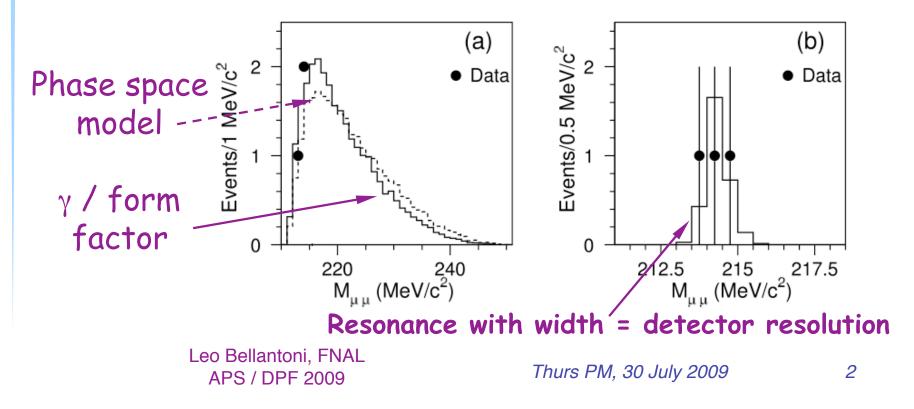


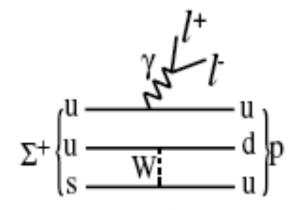
Search for $K_{\rm L} \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ with KTeV data

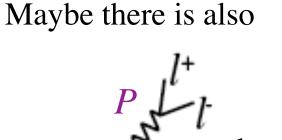
American Physical Society Division of Particles & Fields Detroit 27 - 31 July 2009


> Leo Bellantoni Fermi National Accelerator Lab

For the KTeV Collaboration

The HyperCP Result


Park, et.al. (HyperCP), Phys.Rev.Lett. 94,021801 (2005)


- $Br(\Sigma^+ \rightarrow p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4 \text{ STAT}} \pm 5.5_{\text{SYST}}) \times 10^{-8}$ (3 events)
- Expectation is ~ 0.1x10⁻⁸
- All 3 events at the same mass: 214.3 ±0.5 MeV
- \bullet C.L. for this in S.M. is 0.8%

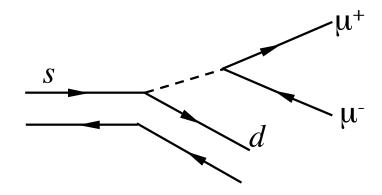
The HyperCP Result

Maybe it isn't just

That would change the detection efficiency

$$Br(\Sigma^+ \to pP^0, P^0 \to \mu^+ \mu^-) = [3.1^{+2.4}_{-1.9} \pm 1.5] \times 10^{-8}$$

 \Rightarrow Partial width of


$$\Gamma(\Sigma^+ \to pP^0, P^0 \to \mu^+ \mu^-) = 2.5 \times 10^{-19} \, MeV$$

Should appear at other *s*-*d* vertices

 Σ^+

Leo Bellantoni, FNAL APS / DPF 2009

In Kaon Decays

The existing measurement of $Br(K^+ \rightarrow \pi^+ \mu^+ \mu^-) = 8.1 \text{ x} 10^{-8}$ corresponds to a $\Gamma = 4.3 \text{ x} 10^{-24} \text{ MeV}$ Almost 5 orders of magnitude below the *Hyper CP* result

Maybe $K \rightarrow \pi \mu^+ \mu^-$ is parity suppressed(?) - look for $K_L \rightarrow \pi \pi \mu^+ \mu^-$

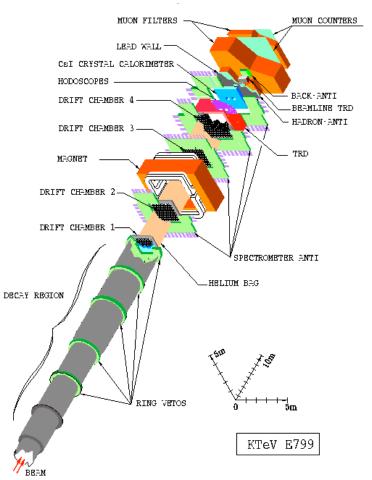
In fact, look for $\pi^0 \pi^0$ not $\pi^+ \pi^-$: $m(K_L) - 2[m(\pi^0) + m(\mu^{\pm})] = 16.3 \text{ MeV}$ $m(K_L) - 2[m(\pi^{\pm}) + m(\mu^{\pm})] = 7.2 \text{ MeV}$ Factor of 18 in phase space!

The CsI calorimeter of KTeV is very good at finding π^0 s

Leo Bellantoni, FNAL APS / DPF 2009

Flurry Of Excitement

Gorbunov & Rubakov, Phys.Rev.D 73,035002 (2006) It might be Sgoldstino!

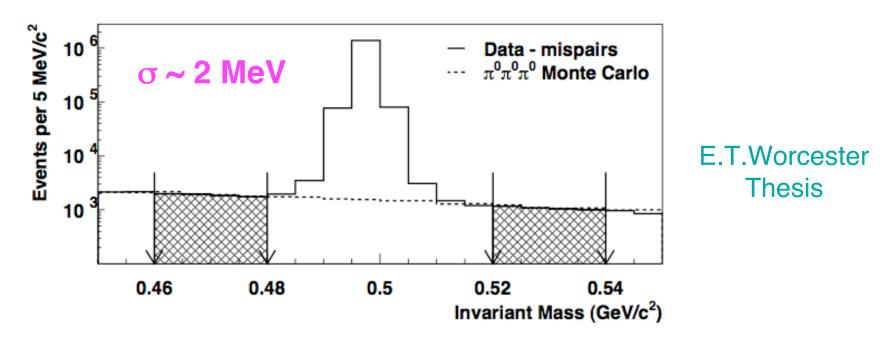

- He, Tandeen & Valencia, Phys.Rev.D 72,074003 (2005) Revaluate the standard model branching ratio - the *Br* measurement is consistent with it
- He, Tandeen & Valencia, Phys.Lett.B 631,100 (2005) Can't be scalar or vector couplings If pseudoscalar, $Br(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) \sim 8.3 \times 10^{-9}$ If axial-vector, $Br(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) \sim 1.0 \times 10^{-10}$
- He, Tandeen & Valencia, Phys.Rev.Lett, 98,081812 (2007) It could be the pseudoscalar *a* of the NMSSM Leading to *a* searches by CLEO, BaBar, D0

Deshpande, Eilam & Jiang, Phys.Lett.B 632,212 (2006) If a pseudoscalar, $Br(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) = 8.02 \times 10^{-9}$

E391a set a 90% C.L. limit on $Br(K_L \rightarrow \pi^0 \pi^0 X^0; X^0 \rightarrow \gamma \gamma) < 2.4 \text{ x} 10^{-7}$

Leo Bellantoni, FNAL APS / DPF 2009

The KTeV Detector



Leo Bellantoni, FNAL APS / DPF 2009

Thurs PM, 30 July 2009

The KTeV Detector

Pure CsI calorimeter:Energy resolution < 1% for > 10GeV γ Position resolution ~ 1mm for e[±]

Muon system: Total thickness 5.1m of steel ~ 31 λ_{l} Efficiency > 98% for > 10 GeV μ^{\pm} π^{\pm} punchthrough probability ~ (1.69 + 0.17P [GeV]) / 1000

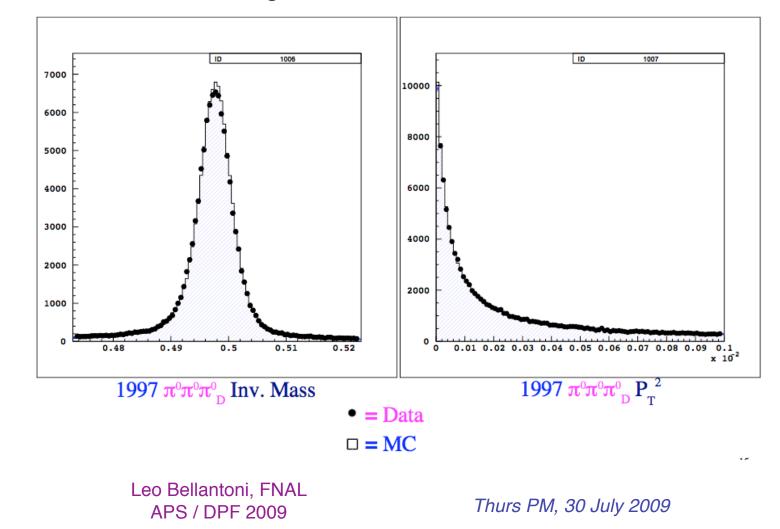
> Leo Bellantoni, FNAL APS / DPF 2009

Thurs PM, 30 July 2009

The KTeV Detector

KTeV actually was 2 experiments: E832 - precision measurement of ℜ(ε ′ /ε) E799 - kaon rare decay program
Data taken 1996-1997, 1999-2000

E799 configuration collected 733 $\times 10^9 K_L$ decays


Previous KTeV Dimuon Results:

 $Br(K_{L} \rightarrow \mu^{+}\mu^{-}\gamma) = (3.62 \pm 0.04_{STAT} \pm 0.08_{SYST}) \times 10^{-7} \qquad 9327 \text{ events}$ $PRL \ 87, \ 071801 \ (2001)$ $Br(K_{L} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}) = (2.69 \pm 0.24_{STAT} \pm 0.12_{SYST}) \times 10^{-9} \qquad 132 \text{ events}$ $PRL \ 90, \ 141801 \ (2003)$ $Br(K_{L} \rightarrow \pi^{0}\mu^{+}\mu^{-}) < 3.8 \times 10^{-10} \qquad 2 \text{ events}$ $PRL \ 84, 5279 \ (2000)$

Leo Bellantoni, FNAL APS / DPF 2009

$733 \times 10^9 K_{\rm L}$ decays

We measure the number of $K_L \rightarrow \pi^0 \pi^0 \pi^0$; $\pi^0 \rightarrow \gamma e^+ e^-$ A mode of similar signature and the *Br*s are known

Signal Characteristics

$$\pi^0 \rightarrow \gamma \gamma$$

 μ + matter \rightarrow ions

 μ + CsI \rightarrow not much

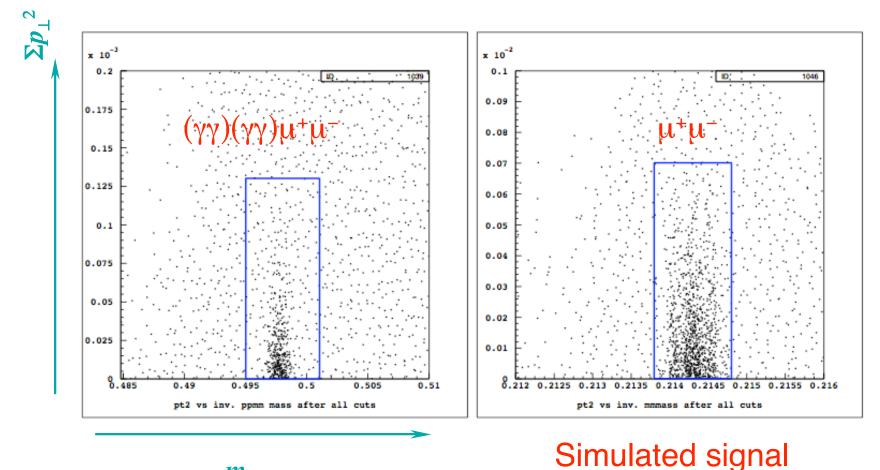
All decay products reconstructed

 $m(K_{\rm L}) - 2m(\pi^0) > m(\mu\mu)$ π^0 and μ pair originate at $K_{\rm L}$ decay point 4 CsI clusters without matching tracks

2 opposite-sign tracks with hits in μ system and > 7 GeV

Csl cluster matching track has E < 1 GeV

Sum of momenta \perp to *K* line of flight < $\sqrt{0.001}$ GeV


 $m(\mu\mu) < 232 \text{ MeV}$

 $m(\pi^0)$ within 9 MeV

Leo Bellantoni, FNAL APS / DPF 2009

Signal Boxes

Two boxes to open... one for the K_L and one for the X^0

*m*_{RECO}

Leo Bellantoni, FNAL APS / DPF 2009

Signal Sensitivity

1997 Acceptance $(K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) = (3.14 \pm 0.004_{stat.})\%$ [flat phase space]

1997 Acceptance $(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) = (2.80 \pm 0.004_{stat.})\%$

1997 Acceptance $(K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}_{D}) = (5.94 \pm 0.02_{stat.}) \times 10^{-5}$

1999 Acceptance $(K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) = (4.03 \pm 0.005_{stat.})\%$

1999 Acceptance $(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) = (3.74 \pm 0.004_{stat.}) \%$

1999 Acceptance $(K_L \rightarrow \pi^0 \pi^0 \pi_D^0) = (1.29 \pm 0.003_{stat.}) \times 10^{-4}$

A single detected signal event corresponds to a Br of 4.1 x10⁻¹¹

Leo Bellantoni, FNAL APS / DPF 2009

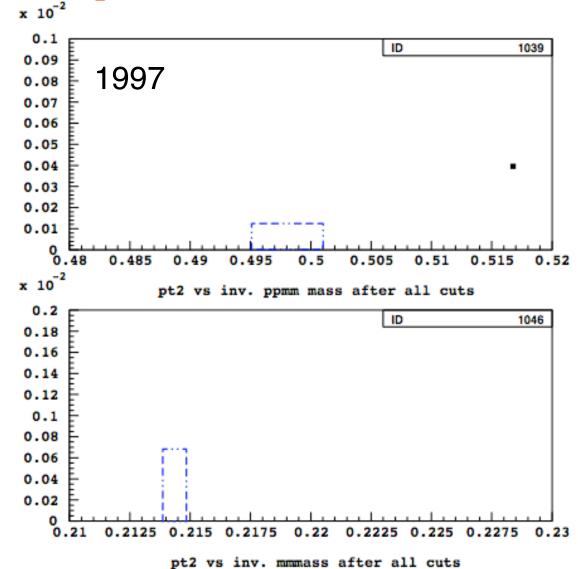
An obvious background is $K_L \rightarrow \pi^+ \pi^0 \mu^{\pm} \nu$ $Br \sim 5.9 \times 10^{-5}$ decays to μ in flight punches through steel

Intensity of beam means particles from a 2nd decay in beam can occur coincidentally with a K_L decay e.g. $K_L \rightarrow \pi^+ \pi^- \gamma$ - so called accidentals

Frequently reconstruct to incorrectly high K_L masses (unless also a K_L decay product escaped detection)

We attempted a background estimate by method of MC simulation of all the backgrounds we could think of

Leo Bellantoni, FNAL APS / DPF 2009

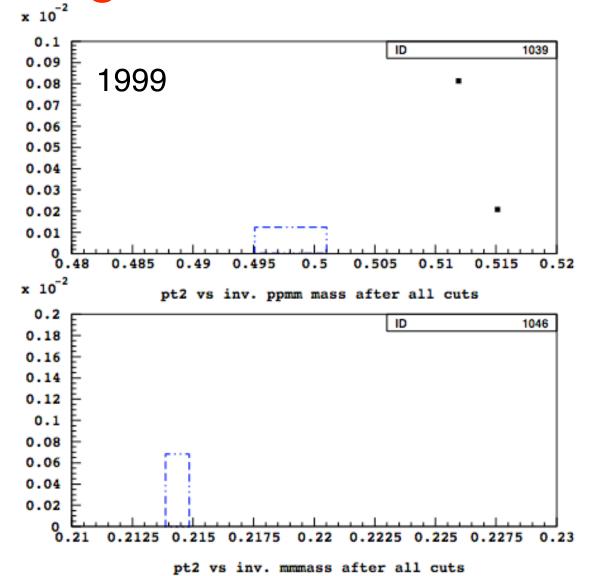

Decay Mode	# '97 MC events generated	# '99 MC events generated	
$\mathbf{K}^{0}_{\mu 3}$ (punch through)	~ 2.6 Billion (0.039 <i>f</i>)	1,752,020,868 (0.027 f)	
$K^0_{\mu3}$ (pion decay = $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$)	244,692,689 (0.0037 f)	421,656,663 (0.0064 <i>f</i>)	
$\mathbf{K}^{0}_{\mu4}$ (punch through)	120,066,571 (8.38 <i>f</i>)	96,372,292 (6.72 <i>f</i>)	
$\mathbf{K}^{0}_{\mu4}$ (pion decay) *	93,373,819 (6.51 <i>f</i>)	109,831,267 (7.66 <i>f</i>)	
$K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ (2x punch through)	1,848,796,492 (0.060 f)	1,062,004,339 (0.035 <i>f</i>)	
$K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ (2x pion decay)	85,552,978 (0.0028 f)	106,912,811 (0.0035 <i>f</i>)	
$K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ (punch & decay)	455,374,316 (0.015 <i>f</i>)	456,480,690 (0.015 <i>f</i>)	
K_L →π ⁺ π ⁻ γ (2x punch through)	15,034,557 (1.41 <i>f</i>)	21,646,250 (2.03 <i>f</i>)	
K_{L} →π ⁺ π ⁺ γ (2x pion decay)	20,304,857 (1.90 <i>f</i>)	16,311,114 (1.53 <i>f</i>)	
K_L →π ⁺ π ⁺ γ (punch & decay)	14,249,908 (1.34 <i>f</i>)	14,495,323 (1.36 <i>f</i>)	
$K_{L} \rightarrow \pi^{+}\pi^{-}(2x \text{ punch through})$	683,676,428 (1.35 <i>f</i>)	671,923,195 (1.32 <i>f</i>)	
$K_{L} \rightarrow \pi^{+}\pi^{-}(2x \text{ pion decay})$	8,529,573 (0.017 <i>f</i>)	21,840,183 (0.044 <i>f</i>)	
$K_{L} \rightarrow \pi^{+}\pi^{-}$ (punch & decay)	50,306,906 (0.100 <i>f</i>)	26,557,616 (0.053 f)	
$K_{L} \rightarrow \mu^{+}\mu^{-}$	1,183,635 (670.0 <i>f</i>)	5,240,705 (2967 <i>f</i>)	
$K_{L} \rightarrow \mu^{+} \mu^{-} \gamma$	9,582,978 (109.8 <i>f</i>)	119,650,358 (1372 <i>f</i>)	
$K_{L} \rightarrow \mu^{+} \mu^{-} \gamma \gamma$	10,869,003 (4473 <i>f</i>)	48,801,465 (20084 <i>f</i>)	
$K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	11,042,193	13,008,645	

Not one of these events passed event selection

Leo Bellantoni, FNAL APS / DPF 2009

Not a lot of background in the data either

3 events that all look like accidentals



Leo Bellantoni, FNAL APS / DPF 2009

Thurs PM, 30 July 2009

Assume no background at all

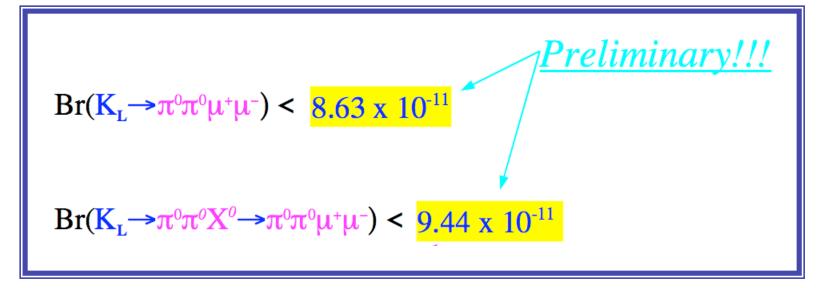
not subtracting background is more conservative than doing the subtraction

Leo Bellantoni, FNAL APS / DPF 2009

Thurs PM, 30 July 2009

Systematic Uncertainties

Source of Systematic Error	$\frac{\Delta F_{\textit{Norm},1997}}{F_{\textit{Norm},1997}}$	$\frac{\Delta F_{Norm,1999}}{F_{Norm,1999}}$
$(473\pm1) \text{ MeV} \le M_{eeyyrry} \le (523\pm1) \text{ MeV}$	+0.04% -0.05%	+0.05% -0.06%
$ M_{rec,pi0} - M_{pi0} \le (14 \pm 1) \text{ MeV}$	+0.02% -0.03%	+0.02% +0.01%
$(94.0\pm1.0) \text{ m} \le Z_{VTX} \le (158.0\pm1.0) \text{ m}$	+0.16% +0.02%	+0.20% -0.10%
$P_T^2 \le (1.0 \pm 0.1) * 10^{-3} \text{ GeV}^2$	+0.11% +0.02%	+0.06% -0.08%
$(0.95\pm0.1) \le E_{cl}(track) / p_{track} \le (1.05\pm0.1)$	+1.24% -2.41%	+2.23% -4.05%
P _z Weighting		1.87%
Cracks in µ Counting Planes	0.50%	0.50%
Energy Loss in µ Filters	0.40%	0.40%
$Br(K_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0})$	0.61%	0.61%
Total Systematic Error from Flux	+1.54% - 2.57%	+3.05% - 4.55%


Preliminary!

Leo Bellantoni, FNAL APS / DPF 2009

Result

There were no events in the signal boxes when opened

At 90% C.L.
$$Br < 2.30 \left(1 + \frac{2.30}{2} \left[\frac{\sigma_R (SES^{-1})}{SES^{-1}} \right]^2 \right) \bullet SES$$

Leo Bellantoni, FNAL APS / DPF 2009

Conclusions

The 90% C.L. upper limit on $Br(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-)$ is about 80 times the *Br* that would obtain if the *HyperCP* result were due to new pseudoscalar couplings

The 90% C.L. upper limit on $Br(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-)$ is only a little below the *Br* that would obtain if the *HyperCP* result were due to new axial-vector couplings This must still be regarded as possible

The possibility that the *HyperCP* result is due to new tensor couplings remains to be examined

The transition Dave Phillips → Dr. David Phillips has also been observed

Leo Bellantoni, FNAL APS / DPF 2009