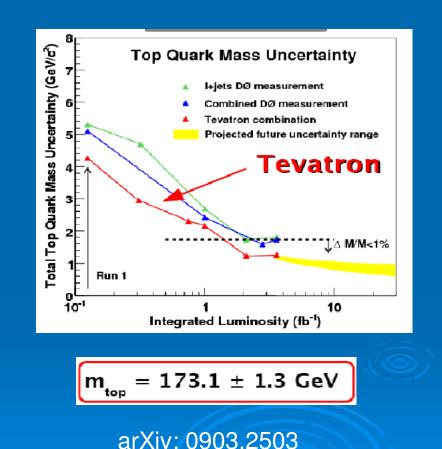
Prospects of first Top pair cross section measurements at CMS

Ashish Kumar SUNY at Buffalo

For the CMS collaboration

University at Buffalo *The State University of New York*

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009


Wayne State University, Detroit, MI

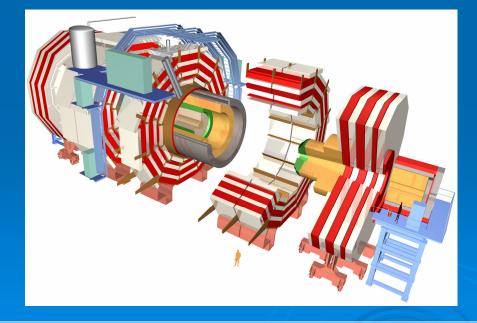
Outline

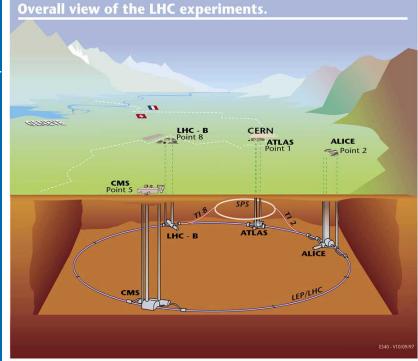
- Introduction
- Motivation for Top quark physics
- From Tevatron to LHC
- Re-discovering Top with early CMS data
- Dilepton Channel : 10 pb⁻¹ @ 10 TeV
- Lepton + Jets Channel : 20 pb⁻¹ @ 10 TeV
- Summary

Introduction

- Since the discovery of Top quark in 1995, CDF & DØ have contributed to immense progress in the knowledge of its production and properties.
- However, except for mass, precision for most of the measurements is statistically limited.
- ► LHC experiments will begin a new era of precision measurements in the Top quark sector : ~8M top pairs & ~2M single top events per year expected at the low luminosity at √s=14 TeV.
- Focus here on early CMS σ_{ttbar} measurements (10-20 pb⁻¹)

Ashish Kumar


What makes Top Special?

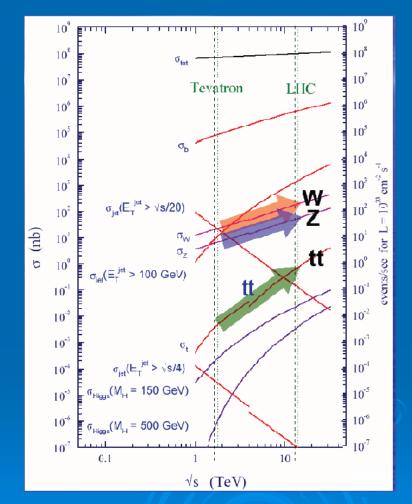

- Top quark mass is a fundamental parameter of the EW theory. In SM, m_{top} and m_w constrain Higgs mass.
- ► Large mass and short life time $(5x10^{-25}s)$ makes top unique. It decays before fragmenting \rightarrow observe "naked" quark.
- Roles of Top quark in the searches beyond the SM at LHC

 -a decay product of new particles thanks to higher √s
 -major background to many searches
 How well we understand and control top background defines ultimate sensitivity to new physics in many searches
- > Due to distinct experimental signatures and final state topologies, ttbar events will also constitute one of the main benchmark sample in detector commissioning, useful from the very early data taking period
 - -- understanding of most physics objects required
 - -- jet energy scale determination
 - -- measurements of performance of b-tagging and lepton ID tools

CMS at the LHC

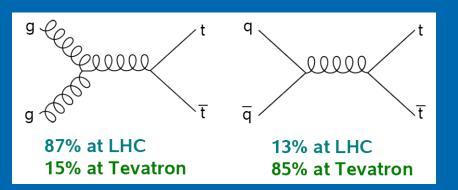
pp collisions at LHC Goal : $\sqrt{s} = 14$ TeV, L = 10^{34} cm⁻²s⁻¹ 2009-10 : $\sqrt{s} = 10$ TeV, L = 10^{31} - 10^{32} cm⁻²s⁻ : analyzable data O(200 pb⁻¹) σ_{ttbar} reduced by ~1/2 @ 10 TeV Top physics program still competitive

Multipurpose detector optimized for precise measurements of physics objects in a wide momentum and rapidity range.


Ashish Kumar

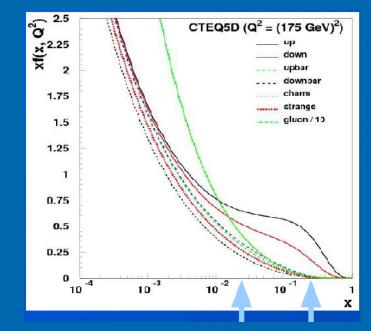
From Tevatron to LHC

LHC opens new regime in energy and hence higher production cross sections.


	Low lun	¹ /y		
Process	σ (pb)	N/s	N/year	
$W{\rightarrow}I\nu$	3×10 ⁴	30	10 ⁹	
Z→ ee	1.5×10 ³	1.5	10 ⁸	
tt	830	1	10 ⁷	

- > σ (ttbar) about x100 than Tevatron \Rightarrow we expect ~ 1Hz of ttbar events.
- Cross-section of the main background, Wjets, grows slower than that of top, though high jet multiplicity states have comparable cross-section gain
- Better signal to background ratio is expected for both ttbar and single top

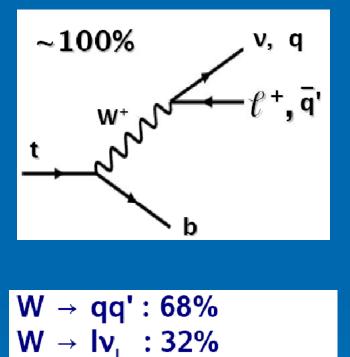
10 fb⁻¹ = 1 year of LHC running at low luminosity 10^{33} cm⁻²s⁻¹@14 TeV


Top Quark Production

LHC: Gluonic production dominates the Top pair production in strong interactions

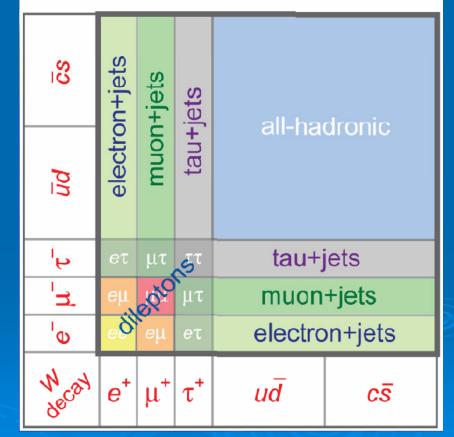
Predicted 8M evts/yr (10 fb-1 @ 14 TeV) 80k evts/yr in 2009-2010 run (200 pb-1 @ 10 TeV)

	14 TeV	10 TeV	2 TeV
σ_{ttbar}	833 pb	414 pb	7.6 pb
σ_{t}	320 pb	~150pb	2.7 pb



LHC Tevatron

Large difference in momentum fractions of the incoming partons at LHC resulting in strong forward boost of the ttbar system \Rightarrow event topologies less central and more boosted.

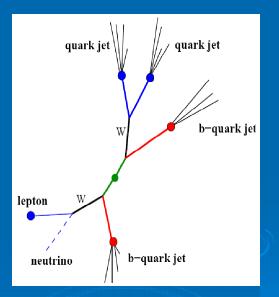

Ashish Kumar

Top Pair Decay Products

→ hadronic: 44% semi-leptonic: 45% dileptonic: 11%

Top Pair Decay Channels

Top Pair Signatures


Dilepton (ee/µµ/eµ) Channel (5%):

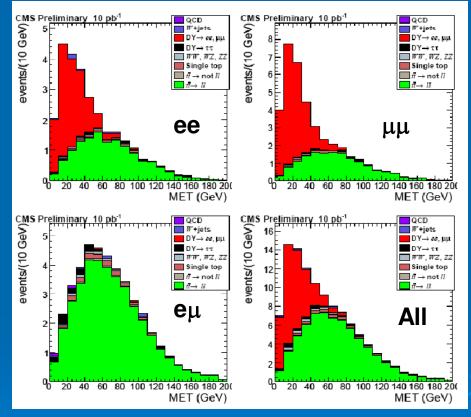
- 2 isolated leptons, 2 b-jets, Missing E_T
- Cleanest final state, but lowest branching ratio
- Dominant background: Diboson, DY, W+jets
- eµ clean channel, not contaminated by DY

≻ e/µ + jets (30%):

- Very characteristic signal
- 1 isolated lepton, 3 light jets, 2 b-jets, Miss E_T
- Reasonable signal/background ratio
- Dominant backgrounds: W+jets, QCD
- Full event reconstruction using Missing E_T
- > All hadronic events (44%):
 - 4 light jets and 2 b-jets
 - Dominant decay mode
 - Large background from multi-jet QCD events
- > The rest 21% are events with τ +X

Rediscovering Top with early CMS data

- Measurement of top pair production cross section is one of early physics goals. Test the theoretical predictions at the LHC energy.
- > During the commissioning phase, the top quark signal will play important role in understanding the detector performance.
- LHC experiments have developed extensive and robust analyses to extract the top signal. In the beginning, focus on channels with leptonic W decay(s) without b-tags and even missing E_T
 --dilepton : simple counting experiment
 --lepton + jets : reconstruct top from 3-jet combination with highest vector sum p_T. Further enhance the signal by finding one of the dijet combinations with mass close to m_W.


Process	NLO cross section						
TTbar	0.8 nb						
W+Jets	65.2 nb						
Z+Jets	6.5 nb						
ww	0.II nb						
wz	0.05 nb						
ZZ	0.16 nb						
Ob	Obtained using MCFM						

Dilepton Channel : Event Selection

JLdt = 10 pb⁻¹ @ 10 TeV

- 2 isolated leptons (ee,μμ,eμ) of opposite charge, p_T >20 GeV, |η|<2.4
- Z-veto |m_{II}-m_z|<15 GeV : reduce the DY background in ee, μμ channels
- \geq 2 jets with high p_T>30 GeV
- Further reduce DY background by requiring MET
 >30GeV (ee,µµ), >20 GeV (eµ)

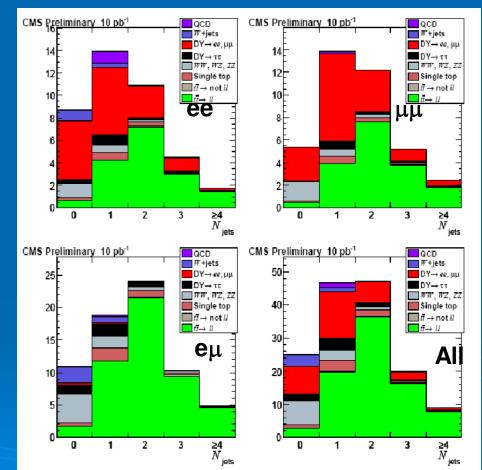
CMS PAS TOP-09-002

DY main background in $ee/\mu\mu$

Pure $e\mu$ channel, can be used alone if bgd (DY) or MET not correctly controlled.

Dilepton Channel : Results

Clear observation of the signal in dilepton final state expected


Chan	Sig.	Bgd.
ee	11.6±0.2	5.5±0.4
μμ	13.2 ±0.2	6.6±0.4
eμ	35.6 ±0.4	3.7±0.2
All	60.4±0.6	15.8±0.6

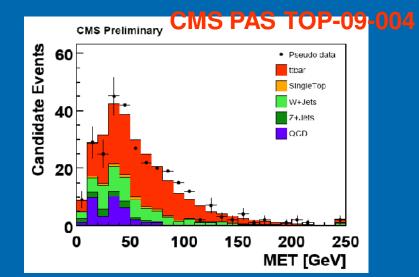
S/B = 4 (all channels) S/B = 9 (eµ) alone

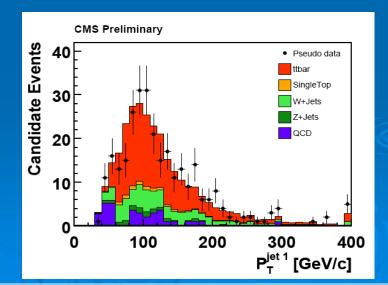
Signal production cross section is expected to be measured with an uncertainty of

15%_(stat)±10%_(syst)±10%_(lumi)

CMS PAS TOP-09-002

Ashish Kumar


ttbar→e+jets : Event Selection


JLdt = 20 pb⁻¹ @ 10 TeV

- > 1 isolated electron : p_T >30 GeV, $|\eta|$ <2.5
- \succ reject events containing μ 's
- \ge 24 jets with p_T>30 GeV, |η|<2.4
- Loose electron veto to reduce Z+jets
- > tightening to barrel-region of $|\eta| < 1.442$ to reduce fake electrons from multi-jet events.

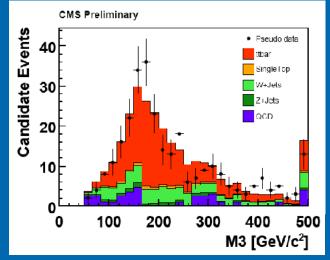
≻No b-tagging, no cut on MET

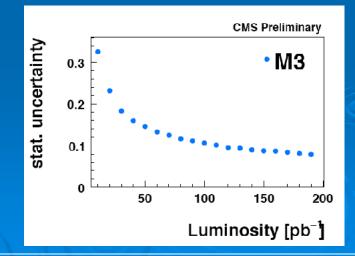
signal	172±1
Bgd	108 ±10.3
W+Jets	57 ±2
Z+Jets	12 ±1
QCD	31 ±10
Single Top	8 ±0

Ashish Kumar

ttbar→e+jets : Results

In the absence of b-tagging, rely on kinematic information to extract the top signal. To estimate background, employ template fit method which relies on a discriminating variable that has different shape in signal & background.


M3: invariant mass of 3-jet combination giving highest vector sum of jet p_T 's


$$\sigma_{t\bar{t}} = \frac{N^{\rm fit}_{t\bar{t}}}{A\cdot\varepsilon_{t\bar{t}}\times\int\mathcal{L}dt}$$

With 20 pb⁻¹ of data @ 10 TeV, it is possible to measure the top pair cross section

$$\Delta \sigma / \sigma = 23\%_{(stat)} \pm 20\%_{(syst)} \pm 10\%_{(lumi)}$$

CMS PAS TOP-09-004

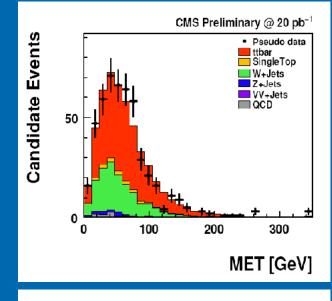
Ashish Kumar

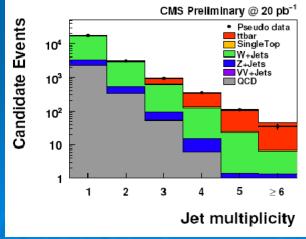
ttbar \rightarrow µ+jets : Event Selection

JLdt = 20 pb⁻¹ @ 10 TeV

> select exactly 1 isolated μ : p_T>20 GeV, $|\eta|$ <2.1

> veto events with >1 μ to reduce contamination from ttbar $\rightarrow \mu\mu$, Z+jets and diboson events


reject events with an isolated electron with pT>30 GeV


 $> \ge 4$ jets with p_T>30 GeV, |\eta|<2.4

> No b-tagging and cut on MET

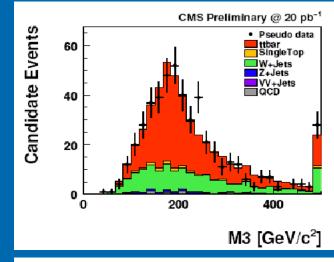
signal	320	
Bgd	171	
W+Jets	140	S/B=1.9
Z+Jets	10	
QCD	7	
Single Top	14	

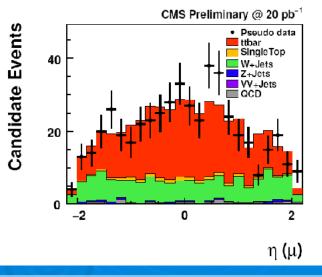
CMS PAS TOP-09-003

Ashish Kumar

ttbar \rightarrow µ+jets : Results

Identify the 3 jets originating from hadronic top decay


Cross section is extracted by template fits to discriminating variables.


M3: invariant mass of 3-jet combination giving highest vector sum of jet p_T 's

With 20 pb-1 of data, σ (ttbar) can be measured with ~20% (stat) & ~25% (syst) uncertainties.

-- syst. uncertainty dominated by jet energy scale.

CMS PAS TOP-09-003

Conclusions

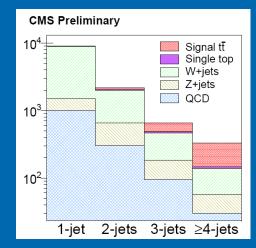
> Early observation of ttbar events is essential part of the detector commissioning. \succ Rich program of Top physics at CMS. \succ Top rediscovery possible with early LHC data. dilepton channel (10 pb⁻¹ of data @ $\sqrt{s} = 10$ TeV) $\Delta\sigma/\sigma = 15\%$ (stat) $\pm 10\%$ (syst) $\pm 10\%$ (lumi) e+jets channel (20 pb⁻¹ of data @ $\sqrt{s} = 10$ TeV) $\Delta\sigma/\sigma = 23\%$ (stat) $\pm 20\%$ (syst) $\pm 10\%$ (lumi) μ +jets channel (20pb-1 of data @ $\sqrt{s} = 10 \text{ TeV}$) $\Delta\sigma/\sigma = \sim 20\%$ (stat) $\pm \sim 25\%$ (syst) $\pm 10\%$ (lumi)

Backup Slides

Dilepton Channel

	Main selection						
Data sample	e ⁺ e ⁻	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$				
$tt \rightarrow \ell \ell$	11.6 ± 0.2	13.2 ± 0.2	35.6 ± 0.4				
other <i>tt</i>	0.21 ± 0.03	0.04 ± 0.01	0.46 ± 0.04				
Single top	0.46 ± 0.03	0.56 ± 0.03	1.40 ± 0.06				
WW/WZ/ZZ	0.26 ± 0.02	0.33 ± 0.03	0.71 ± 0.05				
$DY \rightarrow \tau \tau + jets$	0.3 ± 0.1	0.3 ± 0.1	0.7 ± 0.2				
$DY \rightarrow ee/\mu\mu + jets$	4.1 ± 0.4	5.3 ± 0.4	0.08 ± 0.05				
W + jets	0.2 ± 0.1	< 0.1	0.3 ± 0.1				
QCD	< 1	< 0.4	< 0.4				
Total backgrounds	5.5 ± 0.4	6.6 ± 0.4	3.7 ± 0.2				
Data driven fakes	1.1 ± 0.6	0.8 ± 0.4	2.5 ± 1.2				
Data driven DY	4.0 ± 1.3	5.1 ± 1.6					

Table 3: Summary of uncertainties reported in percent relative to the expected number of signal events. The uncertainties in e^+e^- and $\mu^+\mu^-$ final states are similar and thus combined.


Source	e^+e^- and $\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
Statistical	25	18
Lepton ID	5	5
Lepton isolation	3	3
Jet energy scale	8	5
Theory	4	4
$DY \rightarrow ee, \mu\mu$ method	10	
Fake leptons method	4	4
Residual background	5	4
Integrated luminosity	10	10

The main sources of systematic uncertainties arise from the imperfect knowledge of the lepton reconstruction efficiencies, the background subtraction, the jet energy scale, the prediction of the jet multiplicity spectrum, the modeling of the $t\bar{t}$ production, and the luminosity normaliza-

ttbar→e+jets

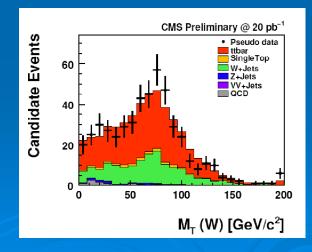
	<i>.</i>		X47	H	0.072	0.1.9
	Cuts	tt	W+jets	Z+jets	QCD	Single Top
	-	8280 ± 6	$9.1E5 \pm 265$	$8.4E+04 \pm 60$	$1.7\text{E8} \pm 3.4\text{E4}$	1455 ± 2
	Trigger	4727 ± 5	$2.0E5 \pm 175$	$2.7E+04 \pm 42$	$3.4\text{E7} \pm 1.9\text{E4}$	669 ± 2
	≥1 Iso e	654 ± 2	$6.4\text{E4} \pm 102$	$1.2E+04 \pm 29$	9030 ± 318	148 ± 1
	=1 Iso e	640 ± 2	$6.4\text{E4} \pm 102$	8672 ± 25	9030 ± 318	146 ± 1
	Muon Veto	590 ± 2	$6.4\text{E4} \pm 102$	8664 ± 25	9030 ± 318	143 ± 1
	\geq 4 jet	215 ± 1	95 ± 4	46 ± 2	76 ± 20	10 ± 0
Option 1	Loose e Veto	208 ± 1	95 ± 3	20 ± 1	76 ± 13	10 ± 0
1	$ \eta < 1.442$	172 ± 1	57 ± 2	12 ± 1	31 ± 10	8 ± 0
Option 2	$E_T > 20 \text{ GeV}$	188 ± 1	83 ± 4	34 ± 2	48 ± 15	9 ± 0
-	Z Veto	186 ± 1	83 ± 4	29 ± 2	48 ± 15	9 ± 0
	Conv. Veto	183 ± 1	80 ± 4	28 ± 1	30 ± 14	9 ± 0

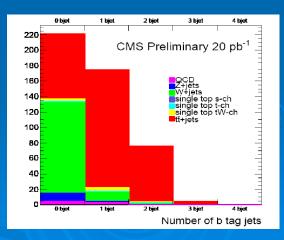
Table 1: Number of events passing each stage of the event selection normalized to 20 pb^{-1} as estimated from Monte Carlo Simulation. The uncertainties are the statistical errors from the corresponding Monte Carlo samples.

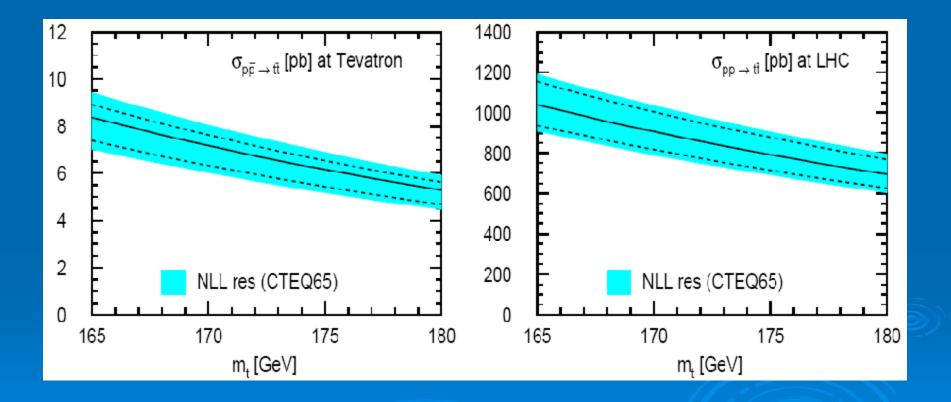
	Relative Systematic Uncertainty
Jet Energy Scale	15%
tt MC Generator	10%
tt ISR/FSR uncertainty	3%
W+jets MC Factorization Scale	1%
W+jets MC Matching threshold	5%
Shape uncertainty of Single Top	1%
Shape uncertainty of QCD	2%
PDF uncertainty	5%
Total	20%

Table 3: Systematic uncertainties on the estimation of the cross section. For each uncertainty we symmetrized the effect on the cross section by quoting the larger deviation. The total uncertainty is calculated as the square root of the quadratic sum of the single uncertainties.

ttbar→µ+jets


Table 2: Cut-flow table. Event yields normalized to an integrated luminosity of 20 pb^{-1} , where cuts are sequentially applied. The second row, labelled 'Trigger', corresponds to the number of all generated events which satisfy the trigger requirement.


	tĒ+jets	tī+jets	Si	ngle top)	W+jets	Z+jets	VV+jets	QCD
	s.l. µ	other	s-Ch	t-Ch.	tW		-	-	
AllEvents	1,220	7,060	32	832	580	912,000	76,240	236	2,546,279
Trigger	978	1,418	10	260	147	168,633	20,952	100	2,032,021
≥ 1 tight μ	620	345	5	140	69	110,509	15,296	73	7,200
$< 2 \text{ tight } \mu$	620	309	5	140	66	110,509	9,300	62	7,200
no tight e	620	264	5	140	62	110,508	9,292	53	7,200
veto on loose μ	618	22.8	5	140	60	110,503	5,492	44	7,192
veto no loose e	616	183	5	140	56	110,469	5,415	34	7,188
≥ 1 jet	614	180	4	125	55	16,998	1,325	18	2,701
≥ 2 jets	593	158	3	63	47	3,076	256	5	387
\geq 3 jets	489	99	1	18	27	651	51	1	60
≥ 4 jets	277	43	0	5	9	140	10	0	7


Table 5: Summary of statistical and systematic uncertainties in the template fits to the $\eta(\mu)$, M3	
and M3' variables.	

Source	Uncertainty [%]		
	Fit to $\eta(\mu)$	Fit to M3	Fit to M3'
Statistical Uncertainty (20 pb ⁻¹)	17.7	16.3	11.5
Jet Energy Scale	16.7	15.1	19
tt MC Generator	1.9	14.9	14
$t\bar{t}$ ISR/FSR	3.3	7.7	2
W+jets Factorization scale	4.4	4.7	4
W+jets Matching threshold	5.5	2.8	4
Single Top Shape	0.1	0.8	1
PDF Uncertainty	5.0	5.0	5.0
Total Systematic Error	19.2	23.8	25.0
Luminosity Error	10.0	10.0	10.0

Ashish Kumar