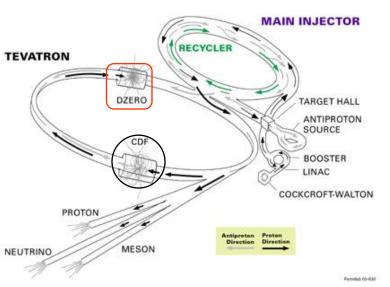


Top quark mass: Latest CDF results, Tevatron combination and electroweak implications

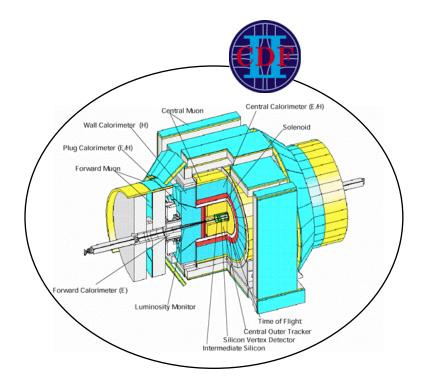

Costas Vellidis

University of Athens & Fermilab

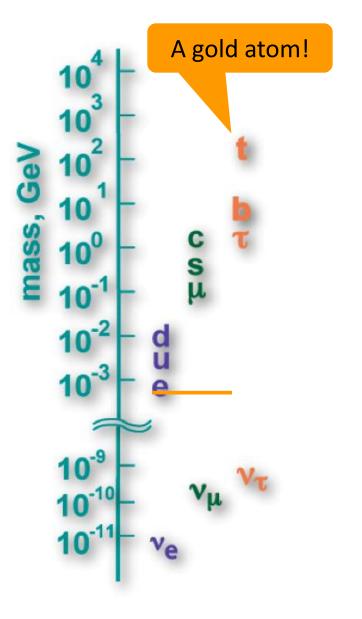
on behalf of the CDF Collaboration

July 28, 2009

Experimental Environment: Fermilab Tevatron

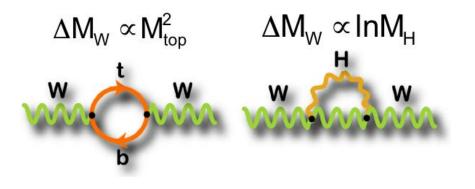


FERMILAB'S ACCELERATOR CHAIN


Two multi-purpose detectors

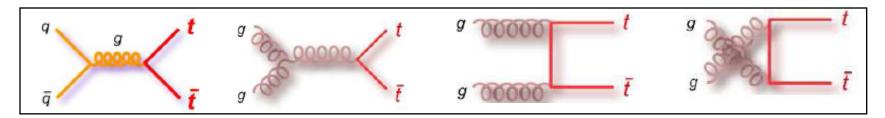
- \rightarrow Accurate tracking system with Si
- \rightarrow Calorimeters to measure e, γ , jet energy
- \rightarrow Muon detection system

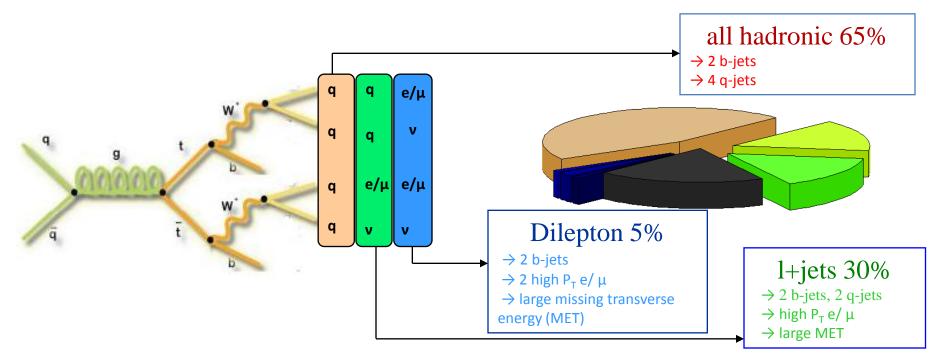
- So far the only place where top has been produced
- ppbar collisions at 1.96 TeV (since 2001)
- About 6 fb⁻¹ delivered, about 5 fb⁻¹ on tape for both experiments



The top quark

Last discovered quark!

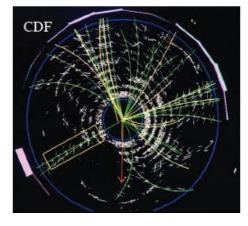

- Top mass is a fundamental parameter in the SM → must be measured accurately
 - Yukawa coupling ~1: hint of special role of the top quark?
 - M_{top} enters in radiative corrections allowing constraint on Higgs mass


Top cross section at 1.96 TeV is O(pb)
 → tens of thousands produced so far!
 – Tevatron is a (small) top factory

Top Production and Signature

Produced in pairs mainly via strong interactions \rightarrow ~7 pb

Decaying in Wb ~100 % of the times \rightarrow 3 possible signatures depending on W's products

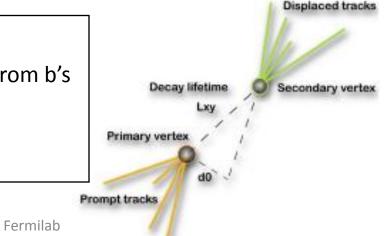


Top Mass Challenges

- A needle in the haystack: $\sigma_{tt}/\sigma_{inel} = 10^{-10}$
- \rightarrow Dedicated top triggers
- \rightarrow Sophisticated event selections

l+jets event

- Neutrino(s) escape the detector
- \rightarrow Indirect measurement of v energy: MET
- \rightarrow Hypotheses needed to constrain the kinematics (dilepton channel)

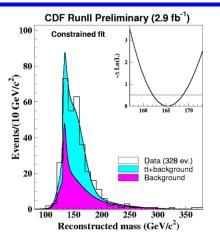

- ✤ Jets of particles instead of quarks are measured
- → Several jet-to-partons ("j2p") possible assignments
- \rightarrow Procedure to report jet energy back to partons: "Jet energy scale" (JES)
- \rightarrow Not all jets originate from top/W : gluon radiation

Jets in top mass analyses

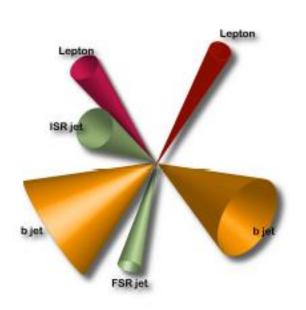
JES corrections account for:


 → Detector effects (non-linearity, non-compensation, multiple ppbar interactions, ...)
 → Physics effects (underlying event, energy out of the jet cone)
 JES calibration "in situ":
 → Invariant mass of dijets from W needs to match W mass
 → Possible in I+jets and all-hadronic channels
 → Calibration returns a JES shift "Δ_{JES}"

Tevatron Combined M _{top} Errors		
Source	Error (GeV)	
iJES	0.48	
aJES	0.33	
bJES	0.23	0.73 GeV
cJES	0.19	
dJES	0.30	
rJES	0.13	
lepPt	0.11	
Signal	0.30	
мс	0.49	
UN/MI	0.03	0.78 GeV
BG	0.26	0.78 Gev
Fit	0.16	
CR	0.41	
мні	0.07	
Syst.	1.07]
Stat.	0.65	
Total	1.25	1


- Flavour tagging
- → Vertex displacement hints to long-lifetime hadrons from b's ("b-tagging")
- \rightarrow Decreases j2p possible assignments
- \rightarrow Increases signal to background ratio

Top mass analysis techniques


Template Method (TM):

- 1) Choose a m_t estimator (typically event-by-event reconstructed m_t)
- 2) Build distributions ("templates") of simulated events
- 3) Fit the data to a combination of a mass-dependent signal template and of a background template

Dilepton channel

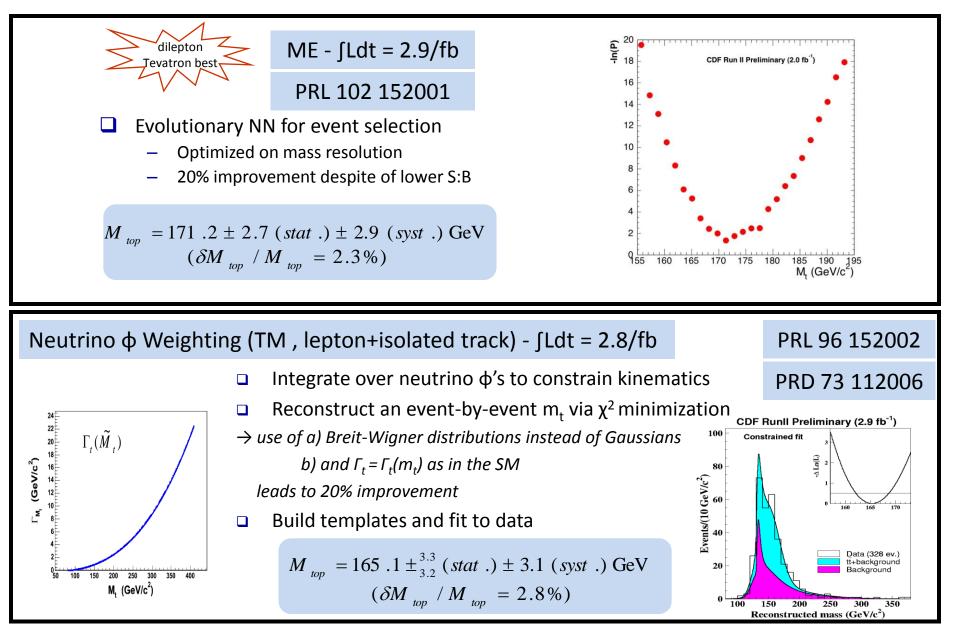
High S:B (2:1), low statistics

Event selection algorithm

- \checkmark Two leptons (P_T >2 GeV)
- ✓ Large MET (>25 GeV)
- ✓ At least two jets (E_T >20 GeV)

✓ Other topological cuts to reject background

Main backgrounds


✓ W+jets (fake lepton), Drell-Yan, dibosons

Main Challenge

No "in situ" JES calibration possible

Mass measurements in the dilepton channel

Lepton+jets channel

Reasonable S:B (1:2), high statistics: the golden channel!

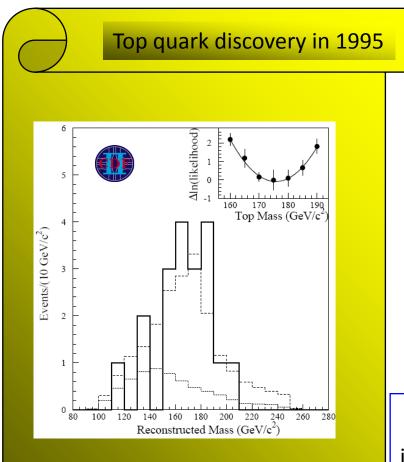
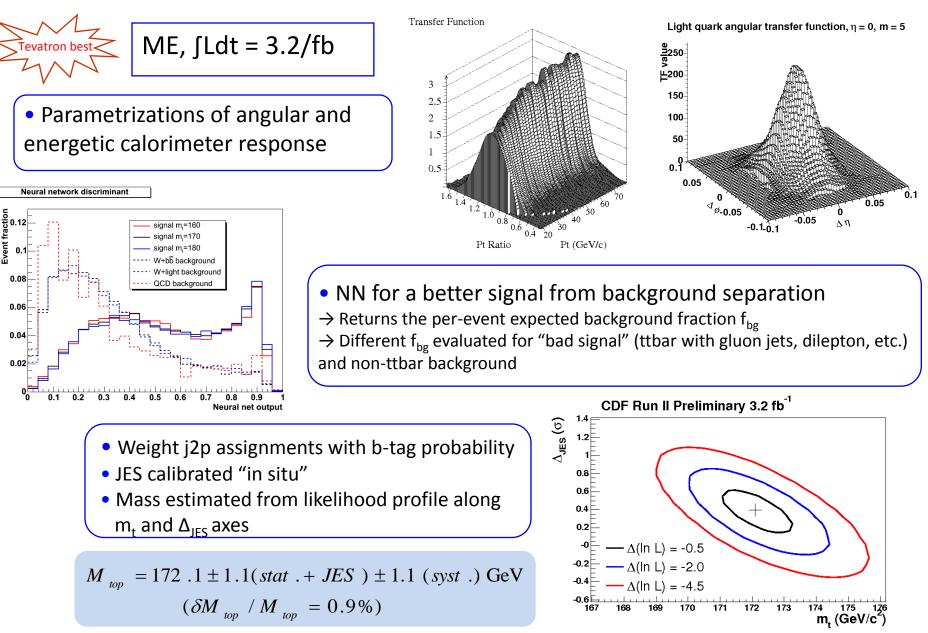


Figure 3: Reconstructed mass distribution for the b-tagged W + \geq 4-jet events (solid). Also shown are the background shape (dotted) and the sum of background plus $t\bar{t}$ Monte Carlo for $M_{top} = 175 \text{ GeV/c}^2$ (dashed), with the background constrained to the calculated value, $6.9^{+2.5}_{-1.9}$ events. The inset shows the likelihood fit used to determine the top mass.

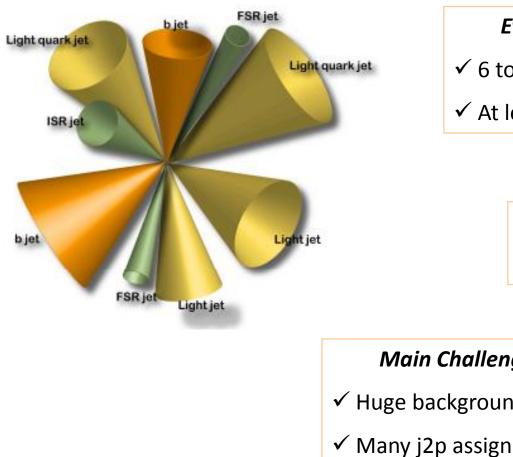
Event selection algorithm

- ✓ 1 lepton ($P_T > 20$ GeV)
- ✓ Large MET (> 20 GeV)
- ✓ At least 4 jets (>20 GeV)
- ✓ 1 b-tag \rightarrow S:B = 4:1


Main backgrounds

W+HF (HF=b,c), W+jets (fake b-tag), QCD multi-jets (fake lepton)

Problem


j2p possible assignments: 12 (0 b-tags), 6 (1 b-tag)

Mass measurements in the lepton+jets channel

All-hadronic channel

Very tiny S:B (1:400), high statistics

Event selection algorithm

- ✓ 6 to 8 central jets (P_T >15 GeV)
- ✓ At least 1 b-tag

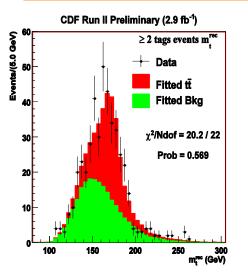
Main background

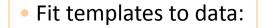
✓ QCD multi-jets

Main Challenges

- ✓ Huge background
- ✓ Many j2p assignments

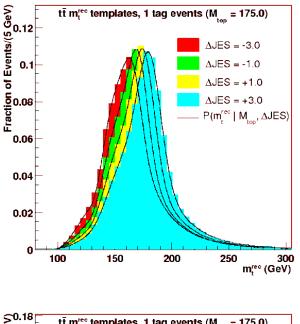
Mass measurements in the all-hadronic channel

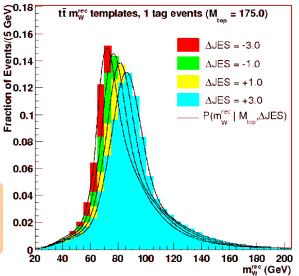

• NN employed to select events


- → Jet-shape variables recently added to distinguish between gluon jets (background) and light-quark jets (signal)
- \rightarrow Increases S:B up to 1:4 (1:1 if 2-tags)
- ightarrow NN different threshold for 1-tag and 2-tag sample

• Event-by-event we reconstruct (via χ2 minimization)

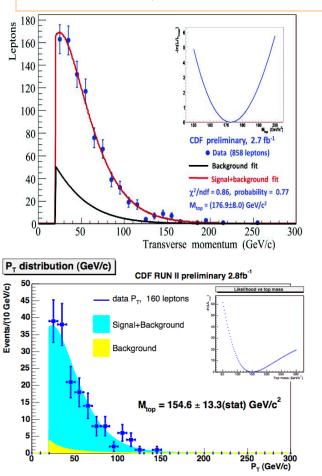
 \rightarrow Top mass (m_t)

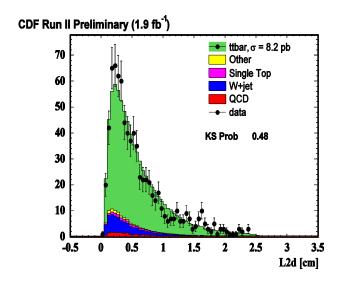

 \rightarrow W mass \rightarrow allows a m_t-independent JES calibration



$$M_{top} = 174.8 \pm 2.4(stat. + JES) \pm \frac{1.2}{1.0} (syst.) \text{ GeV}$$

$$(\delta M_{top} / M_{top} = 1.5\%)$$

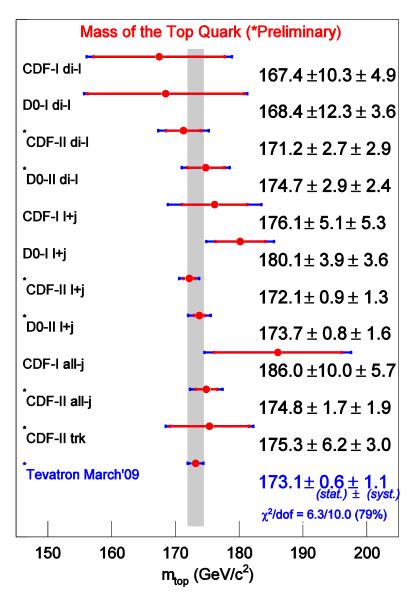




Mass measurements with minimal dependence on JES

Leptons are independent of JES

- \rightarrow Select a lepton kinematic variable (P_T) and use MC to determine the relation of its distribution with M_{top}
- → Fit the MC signal & background lepton P_T distributions to the data to measure M_{top}
- The SecVtx transverse decay length L2d (or L_{xy}) of b-tagged jets is minimally dependent on bJES
- \rightarrow Use MC to determine the relation of \langle L2d \rangle with M_{top}
- \rightarrow Solve the MC-established relation of the measured $\langle L2d \rangle$ with M_{top} to measure M_{top}


$$M_{top} = 175 .3 \pm 6.2(stat .) \pm 3.0 (syst .) \text{ GeV}$$

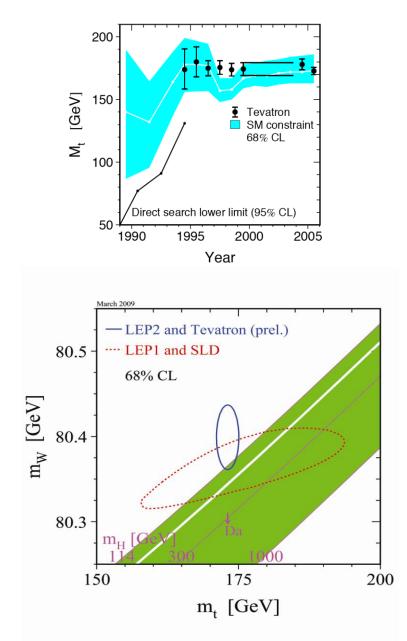
$$\int Ldt = 1.9/fb \qquad (\delta M_{top} / M_{top} = 3.9\%)$$

Two TM-like, track-based, fast and accurate methods for LHC, where statistics will not limit the precision

$$M_{top} = 176.9 \pm 8.0(stat.) \pm 2.7 (syst.) \text{ GeV} \quad (1 + \text{ jets})$$
$$M_{top} = 154.6 \pm 13.3(stat.) \pm 2.3 (syst.) \text{ GeV} \quad (\text{dil})$$
$$\int Ldt = 2.8/fb \qquad (\delta M_{top} / M_{top} = 4.4\%)$$

Costas Vellidis- Athens & Fermilab

Combination of most accurate analyses

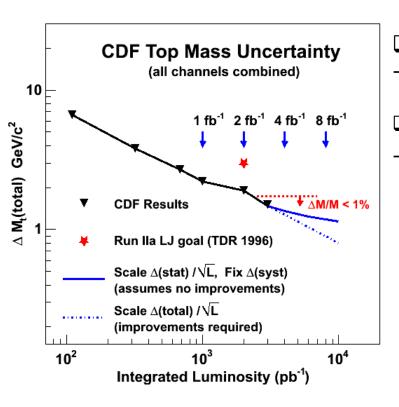


Tevatron world average (March '09)

$$M_{top} = 173.1 \pm 0.6 (stat.) \pm 1.1 (syst.) GeV$$

$$(\delta M_{top} / M_{top} = 0.75\%)$$

How does it fit in the big picture (SM)



- EWK predictions were verified in the top quark mass - good agreement with SM
 - Will it happen for the Higgs (if it exists)?

 Running traditional EWK fits, updated using latest Tevatron W boson (2007) and top quark mass (2009)

Conclusions & plans for the future

Both CDF and DØ reached <1% precision in their combined measurements

□ Already beyond Run II goal (δ Mtop ~3 GeV) → but still more data coming

□ Precision now dominated by systematic uncertainties
 → In order to push it down we are planning to:

- i. Understand better physics models
 - ISR/FSR with the increased Drell-Yan samples
 - Improved color reconnection models
- ii. Disentagle correlations among different uncertainties,e.g. residual JES vs. MC generator

More info available at

http://www-cdf.fnal.gov/physics/new/top/public_mass.html