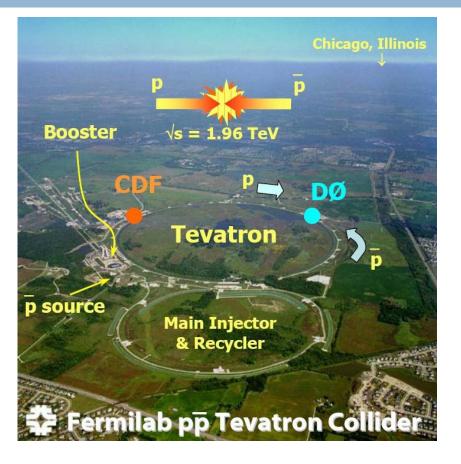
SEARCH FOR SUPERSYMMETRIC HIGGS BOSONS AT THE TEVATRON

Flera Rizatdinova on behalf of the D $\ensuremath{\varnothing}$ and CDF Collaborations



DPF 09, Wayne State University, Michigan

Outline

- _
- Introduction
- Results for individual channels
- Combined upper limit on neutral MSSM Higgs-boson production from DØ
- Summary

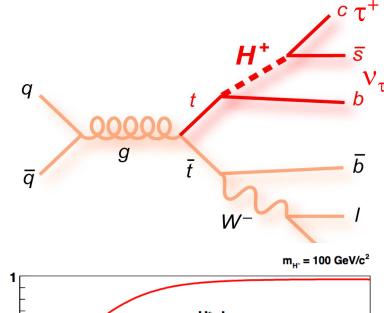
Up to date $\sim 7 \text{ fb}^{-1}$ delivered luminosity. Expect $\sim 10 \text{ fb}^{-1}$ by the end of Run II. Results are based on up to 2.6 fb⁻¹ data.

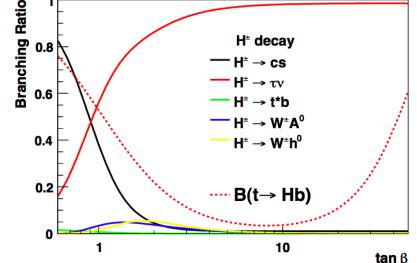
Motivation and channels to be discussed

- SUSY as an extension of the SM provides
 - a natural solution to the hierarchy problem
 - a dark matter candidate and GUT-scale unification.
- MSSM predicts the existence of five physical Higgs bosons
 - \blacksquare Two charged, H⁺ and H⁻
 - **Three neutral**, $\phi = \{h, H, A\}$
- □ Coupling to weak isospin members of the fermion doublets is proportional to tan β → expect a big enhancement of the cross sections

- Search for a charged Higgs bosons:
 - m_h < m_t: t→H⁺b with higgs boson decaying as

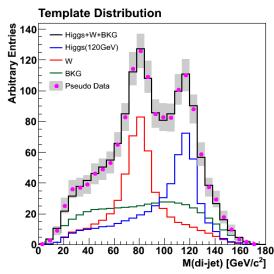
$$= H^+ \rightarrow \tau^+ \nu$$
$$= H^+ \rightarrow cs$$

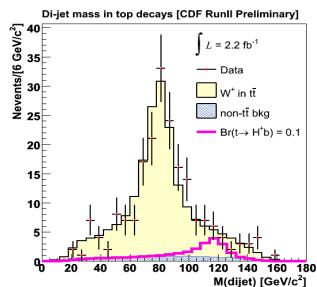

$$\square$$
 m_h>m_t: qq' \rightarrow H⁺ \rightarrow tb


Search for a neutral Higgs bosons :

$$\begin{array}{c} \bullet \phi \rightarrow \tau \tau \\ \bullet \phi \rightarrow b \tau \tau \\ \bullet \phi \rightarrow b b b \end{array}$$
 Combination

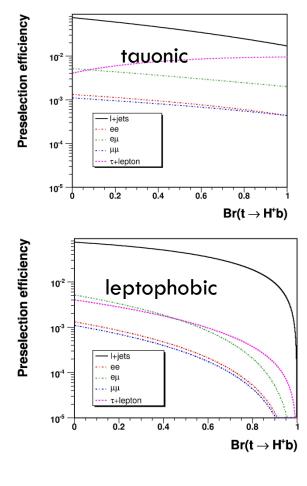
Charged Higgs boson in top quark decays


- 4
- Consider purely tauonic decay ($H^+ \rightarrow \tau^+ v_{\tau}$) and leptophobic decay ($H^+ \rightarrow c\bar{s}$)
- Indirect search: Search for H⁺ using ttbar cross-section measurements in different final states (ℓ+jets, dileptons and τ+ℓ)
- Direct search: Search for H⁺ as a peak in mass distribution of two jets



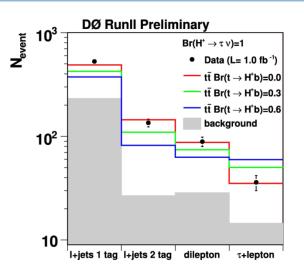
Search for a charged Higgs boson in H⁺→cs channel (CDF)

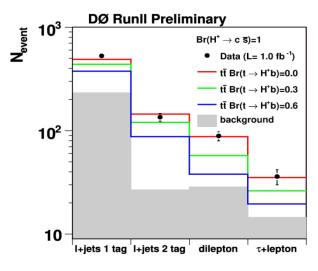
- Search for a second peak in an invariant mass of two light jets in top quark decays using mass templates
- □ A binned likelihood function is constructed using the probabilities P^W, P^H and P^{bkg} from mass templates. Fit parameters are N_{ttbar}, Br(t→H⁺b), and N_{bkg}.
- □ No excess observed, upper limit for Br(t→bH⁺) for Higgs boson mass interval from 90 to 150 GeV



5

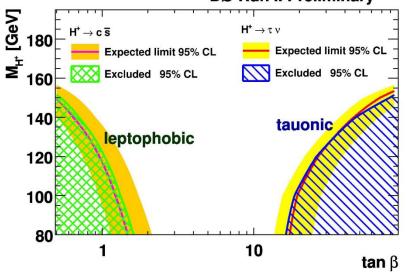
Search for a charged Higgs boson in $H^+ \rightarrow \tau^+ v_{\tau}$ and $H^+ \rightarrow cs$ channels (DØ)

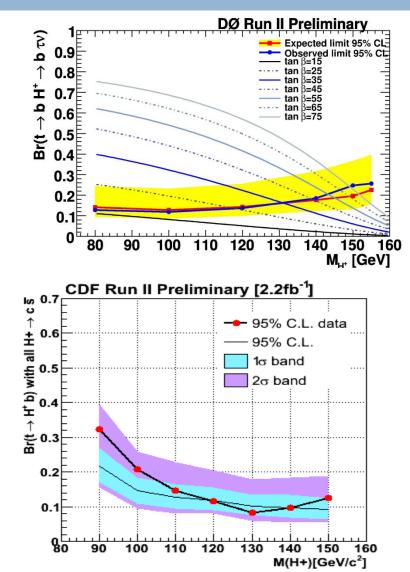

- Tauonic: search for a deficit of the expected number of events compared to SM prediction in all but ℓ+τ channel
- Leptophobic: Search for a deficit of events compared to the expected number of tt events in all channels considered.
- □ Selection:
 - One isolated lepton (e or μ) with $p_{\tau} > 15$ GeV for the $\ell + \tau$ channel;
 - Identified hadronic tau
 - **Two jets with** $p_T > 20$ and 30 GeV;
 - At least one jet is identified as b-jet



 $M(H^{+}) = 80 \text{ GeV}$

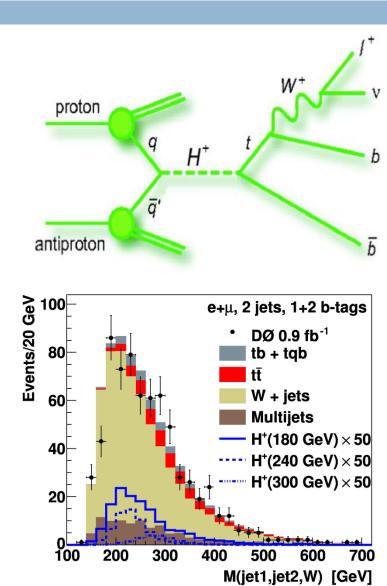
Search for a charged Higgs boson in $H^+ \rightarrow \tau^+ v_{\tau}$ and $H^+ \rightarrow cs$ channels (DØ)


- Upper plot: tauonic model; bottom plot: leptophobic model
 - Good agreement with the SM top quark decay
- Calculate expected numbers of events with charged Higgs boson in 14 channels (I+jets with 3 and 4 jets, with 1 and 2 tags, ee, μμ and eμ +1 and 2 jets, eτ and μτ channels), for various Higgs masses and branching ratios
- Perform a maximum likelihood fit to the number of the observed events in data
- \square Br(t \rightarrow H⁺b) is free parameter of the fit

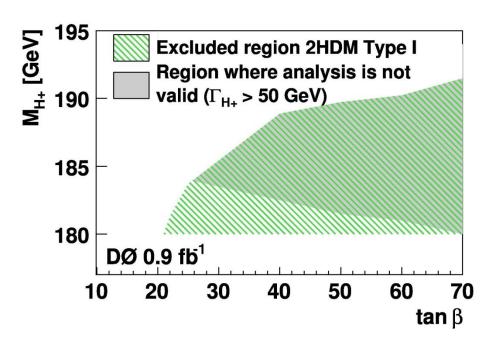


$D \ensuremath{\varnothing}$ and CDF results on search for a light charged Higgs boson

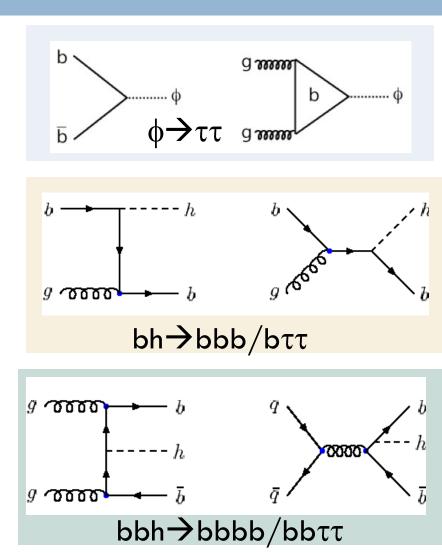
- Tauonic model: exclude Br from above 0.16 to above 0.2 for the m_{H+} range between 80 and 155 GeV. Modelindependent measurements exclude Br from 0.12 to 0.26 depending on m_{H+}.
- Leptophobic: DØ excludes Br fraction above 0.2 for the same mass range.
 DØ Run II Preliminary



Search for a Higgs boson with $m_{H^+} > m_t$


□ Selection:

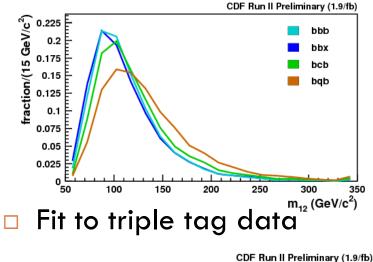
- Exactly 2 jets with p_T>20 and 25 GeV, at least 1 jet b-tagged
- Only one high p_T isolated lepton
- □ 15<MET <200 GeV
- Search for an excess of the events in the invariant mass distribution of the (jet, jet, W) system
- Simulate different 2HDM by combining in different proportions purely left and right-handed signal samples
- Perform binned likelihood fit using Bayesian method to calculate crosssection limits

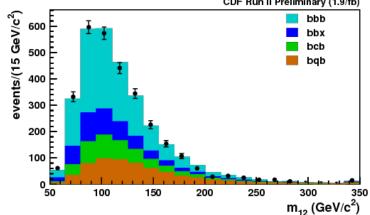

Result on search for a heavy charged Higgs boson

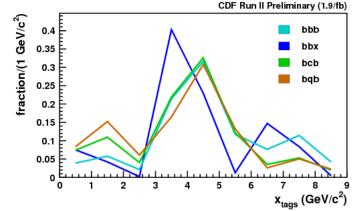
- A region in the M_{H+} vs tan β plane has been excluded at the 95% C.L. for Type I 2HDMs.
- The analysis sensitivity is currently not sufficient to exclude regions of tan $\beta < 100$ in the Type II 2HDM.
- In a Type III 2HDM, the width of the Higgs boson depends quadratically on the mixing parameter, limiting our ability to exclude regions in M_{H+}-ξ parameter space.

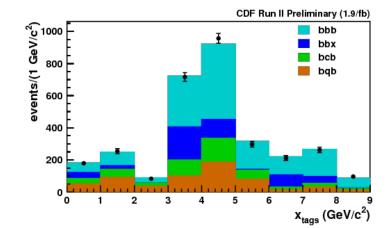
Search for a neutral MSSM Higgs bosons

- $\Box \phi \rightarrow \tau \tau$
 - BR ~10%, clean signature
- □ b*φ*→bττ
 - additional sensitivity at low m_A
- □ (b)b*φ*→(b)bbb
 - BR ~90%, large multijet background
 - For large tanβ at least two Higgs bosons have approximately the same mass and couplings to downtype quarks.
 - The production of Higgs boson associated with b-quark is enhanced by a factor of 2×tan² β

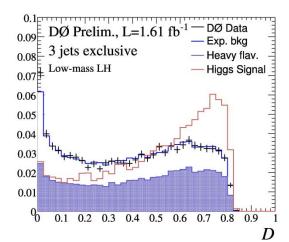


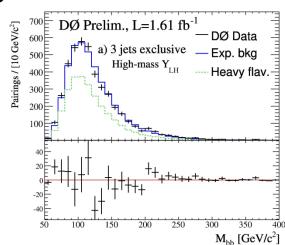

Search for $b\phi \rightarrow bbb$ (CDF)


- Search for an enhancement in the mass distribution of the two lead jets in triply b-tagged events, m₁₂.
- In addition, have discriminant, x_{tags}, which is based on the mass of the tracks forming the displaced vertex.
- Main background: QCD (know from MC simulation that at least two jets are real b-jets: bbb, bbc, bbq, bcb, bqb)
 - Start with double tag 3-jet event,
 - Apply MC derived tagging efficiencies to get bbb, bbc, bbq templates
 - Assume that m₁₂ in bcb is similar to m₁₂ in bbb; correct for tag masses only
 - Derive m_{12} and x_{tags} templates, apply to data and let them float during the fit


Search for $b\phi \rightarrow bbb$ (CDF)

Templates obtained on 2-tag data with applied tagging efficiencies

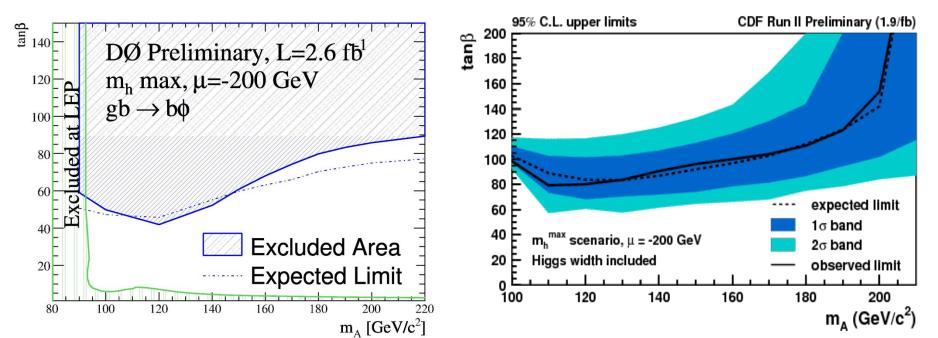



Search for $b\phi \rightarrow bbb$ (DO)

14

Selection:

- At least 3 tagged jets; p_T of two leading b-tagged jets > 25 GeV
- Two jet pairs with largest sum p_T are considered as Higgs boson candidates. Required: ∆R>1 to remove g→bb process
- Background:
 - The di-jet invariant mass distribution of the expected triple b-tagged sample is obtained from the double b-tag data shape times ratio of MC shapes in triple and double tagged events.



Results on $b\phi \rightarrow bbb$ search

15

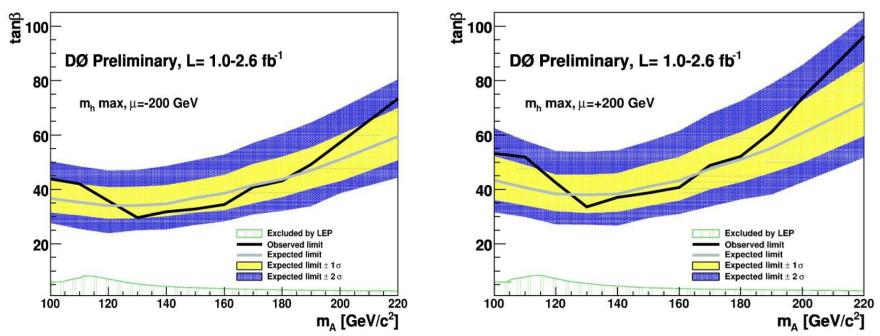
- Width is included in the limit calculations (not negligible at high tanβ)
- \square Strongest limits for Higgs field mixing parameter, μ < 0
- Systematic uncertainties include: theoretical, Jet ID, Jet energy corrections, b-tagging, trigger, shape of the BG modeling

DO Combination on neutral MSSM Higgs bosons search

- □ Limit was obtained on neutral Higgs bosons production using three channels: $h \rightarrow \tau \tau$, $bh \rightarrow b \tau \tau$ and $bh \rightarrow b bb$
 - 19 sub-channels with measurements done on 1 to 2.6 fb⁻¹ data
- Four benchmark MSSM scenarios:

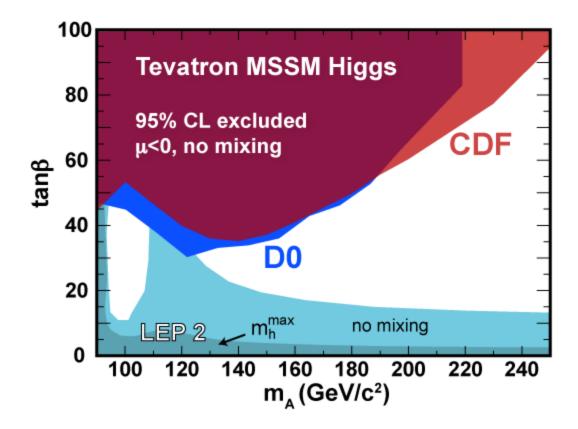
16

- \square Maximal mixing (M_{SUSY} = 1 TeV, M_2 = 200 GeV, X_t = 2M_{SUSY}, $A_b = A_t$, $m_{\tilde{}g} = 0.8 M_{SUSY}$) with $\mu = \pm 200 \text{ GeV}$
- □ Minimal mixing ($M_{SUSY} = 2$ TeV, $M_2 = 200$ GeV, $X_t = 0$, $A_b = A_t$, $m_{r_g} = 0.8M_{SUSY}$) with $\mu = \pm 200$ GeV


$D \oslash Combination result$

17

Limits are set using the modified frequentist (or CLS) technique


$$CL_{S} = CL_{s+b} / CL_{b}$$

- Strongest limit on neutral MSSM Higgs bosons in tanβ –m_A
 plane to date at a hadron collider
- Combination between D0 and CDF to come...

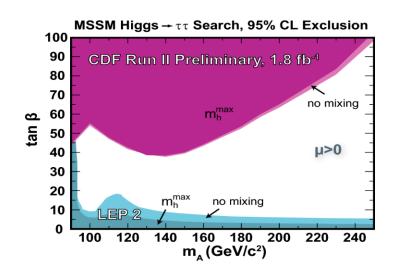
Summary on the MSSM neutral Higgs boson exclusion

□ Limits from both experiments:

Summary

- Tevatron performs very well expect 10 fb⁻¹ per experiment by the end of Tevatron era
- Both DØ and CDF are actively searching for hints of supersymmetric Higgs bosons in data
- Combining various channels and results from both experiments significantly improve Tevatron's sensitivity to new physics
- Only 2.6 fb⁻¹ of data has been used so far by each experiment – expect to have new results on much larger statistics in the near future
 - Better limit or Discovery?...

Backup slides

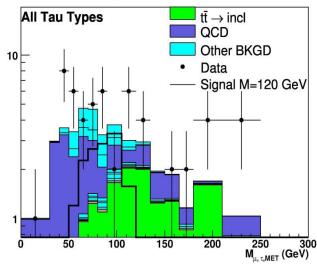

20

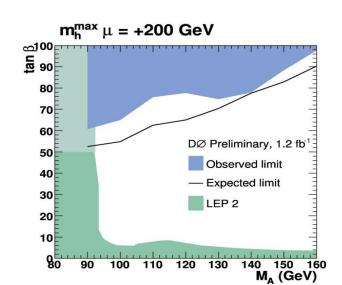
Search for $\phi \rightarrow \tau \tau$

21

Event selection:

- **I** Isolated electron or muon + hadronic τ
- Isolated electron + isolated muon
- □ Backgrounds: $Z \rightarrow \tau \tau$, multijets, W+jets, $Z \rightarrow ee/\mu\mu$, di-bosons
- Discriminating variable: Visible mass





Search for $b\phi \rightarrow b\tau\tau$

- \Box Search in $\mu \tau_{had}$ channel
 - isolated muon + opposite sign hadronic tau
 - at least one b-tagged jet
- □ Background: ttbar, QCD, $Z(\rightarrow \tau \tau)$ + heavy flavor jets
- Events selected using combination of NN(trained against tt) and likelihood (multi-jet)

DØ Runll Preliminary, 1.2 fb1

