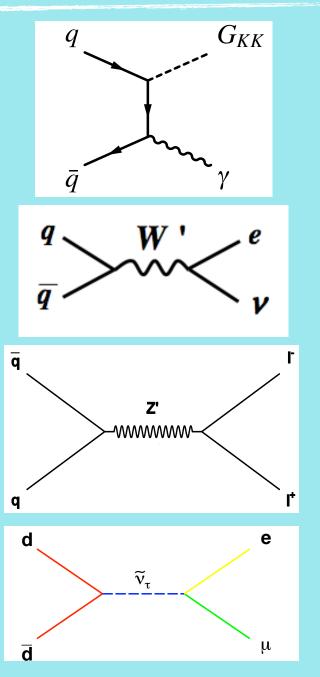


Search for New Phenomena in Final States with Leptons, Photons, MET

Ioannis Katsanos University of Nebraska - Lincoln for the D0 Collaboration

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009

Wayne State University, Detroit, MI


Outline

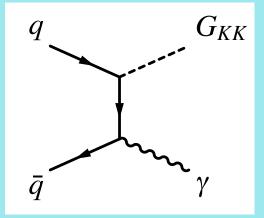
2

- * Extensive program of searches for New Phenomena
 - * Search for resonances and excesses in the production of SM particles
 - * Signature based in addition to model based searches
- * Signatures presented in this talk:
 - * photon + MET (LED $q\bar{q} \rightarrow \gamma G_{KK}$)
 - * electron + MET (W')
 - * Two EM objects di-EM (LED)
 - * Two electrons (Z' and RS graviton)
 - * electron + muon (RPV sneutrino)

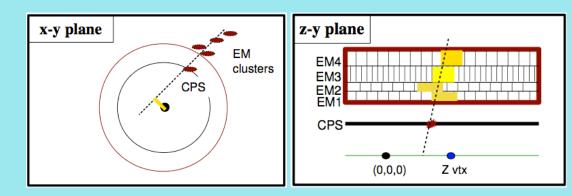
Ioannis Katsanos, UNL

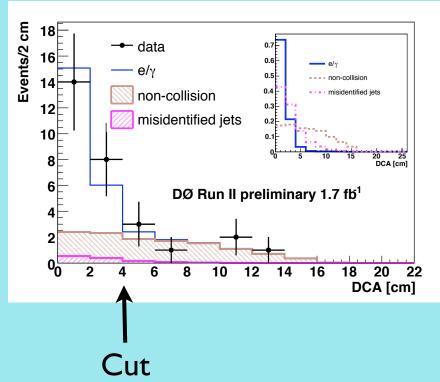
Motivation

* Heavy Resonances

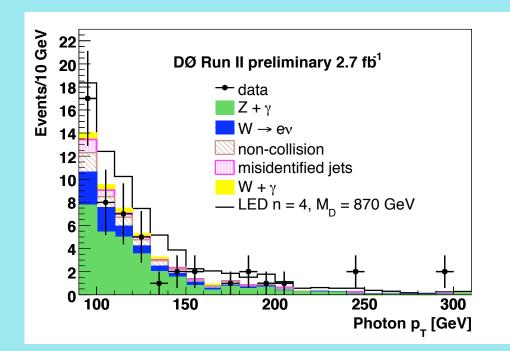

- * Extra gauge bosons
 - * $SU(3) \times SU(2)_L \times U(1)_Y$ embedded in a larger gauge group (SO(10), E6, ...) to achieve grand unification, after symmetry breaking, U(1) groups survive
 - * L-R symmetry, "little Higgs" models
- * SUSY with RPV resonant production may occur with lepton pair of same or different flavor decay products
- * Randall-Sundrum model, one extra dimension \Rightarrow excited KK modes G^*
- * Excesses on the production of SM particles
 - * LED models with n extra dimensions can give rise to a real graviton emission, or virtual graviton exchange

Ioannis Katsanos, UNL


- * Result based on 2.7 fb^{-1} of data
- * Event Selection
 - * Single Photon with $E_T > 90 \text{ GeV}$
 - * Central ($|\eta| < 1.1$)
 - * Isolated in both the tracker and the calorimeter
 - # MET > 70 GeV
 - * Clean event
 - * Veto on muons, jets, energetic tracks and other EM objects

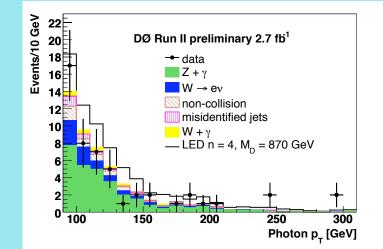


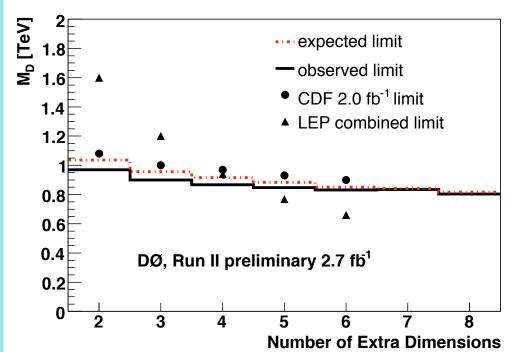
- * Backgrounds
 - * $Z\gamma \rightarrow \nu\nu\gamma$, W+ γ
 - * Studied in Monte Carlo
 - * W \rightarrow ev, W/Z + jet, non-collision
 - * Studied from data using distance of closest approach (DCA) templates
 - Pointing algorithm based on transverse and longitudinal segmentation of the calorimeter and the pre-showers
 - Fit sum of DCA templates to data


Ioannis Katsanos, UNL

- * Good agreement between data and background.
 - Proceed with setting limits on the fundamental Planck scale M_D

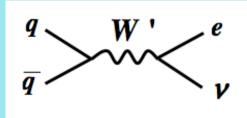
Backgrounds	
Ζ + γ	29.5 ± 2.5
W→ev	8.5 ± 1.7
W + Y	2.2 ± 0.3
Non-collision	6.6 ± 2.2
Mis-identified Jets	3.1 ± 1.5
Total Background	49.9 ± 4.1
Events	51

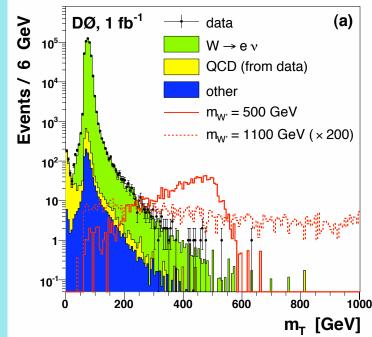




- For limit setting, photon E_T distribution in data is compared to signal + backgrounds looking for discrepancies
 - For signal study LED with number of extra dimensions, n, ranging from 2 to 8

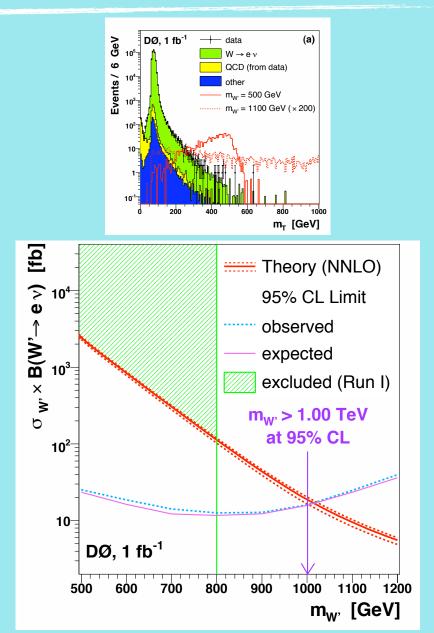
n	Observed (Expected) cross section limit (fb)	Observed (Expected) M(D) limit, GeV			
2	19.0 (14.6)	970 (1037)			
3	20.1 (14.7)	899 (957)			
4	20.1 (14.9)	867 (916)			
5	19.9 (15.0)	848 (883)			
6	18.2 (15.2)	831 (850)			
7	15.9 (14.9)	834 (841)			
8	17.3 (15.0)	804 (816)			


Ioannis Katsanos, UNL



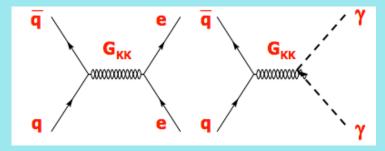
Electron + MET W' Bosons

- * Published result based on 1 fb⁻¹ of data
- * Event selection
 - * An isolated EM candidate with $E_T > 30 \text{ GeV}$
 - * Shower shape consistent with that of an EM object
 - * Track matched
 - * MET > 30 GeV
- * Backgrounds
 - * Physics:
 - * W \rightarrow ev (dominant), WW, ZZ, WZ, Z
 - * Are studied in Monte Carlo
 - * Instrumental Background
 - * Jet mis-identified as electron
 - * Studied from data, by selecting a sample of fakes
- ★ Fit M_T spectrum in data with the sum of backgrounds
 Ioannis Katsanos, UNL DPF 2009, July 28, 2009



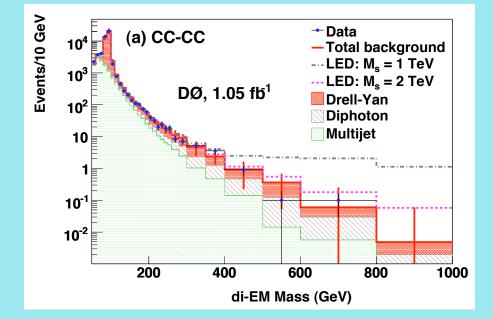
Electron + MET W' Bosons

- * No evidence of W' in data, so proceed with setting a limit
 - Use M_T distribution above 140 GeV to compare between data and signal + backgrounds
 - * Set 95% confidence level upper limit on the production cross-section × BR
 - * Convert to a lower mass limit for a SSM W' of 1.00 TeV


PRL 100, 31804 (2008)

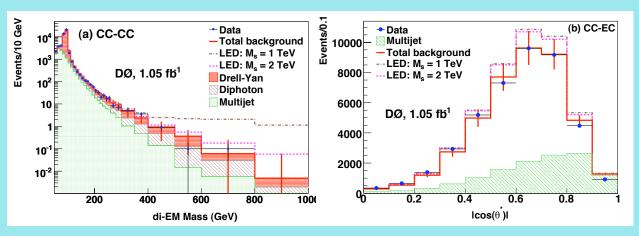
Di-EM Large Extra Dimensions

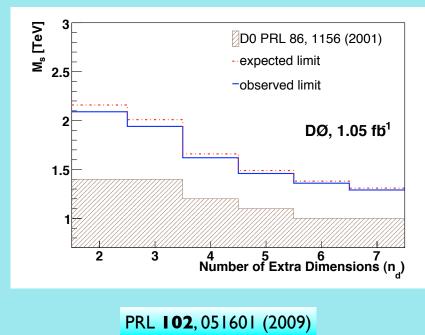
- * Published result based on 1 fb⁻¹ of data
- * Looking for excess on the production of SM particles
- * Event selection
 - * Two isolated EM objects
 - $* E_{\rm T} > 25 \, {\rm GeV}$


- * Shower shape consistent with that of EM objects
- * Central ($|\eta| < 1.1$) and forward ($1.5 < |\eta| < 2.5$) cluster
- * Do not distinguish between electrons and photons

Di-EM Large Extra Dimensions

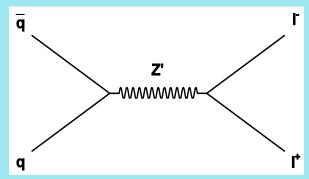
- ***** Backgrounds
 - * Physics
 - ∗ Z/γ^{*}→ee
 - * Direct $\gamma\gamma$ production
 - * Studied in MC
 - * Instrumental
 - * Jets misidentified as EM objects
 - Studied from data by inverting the shower shape criteria to estimate the shape of the instrumental background
- * Fit the di-EM invariant mass spectrum to the sum of the backgrounds



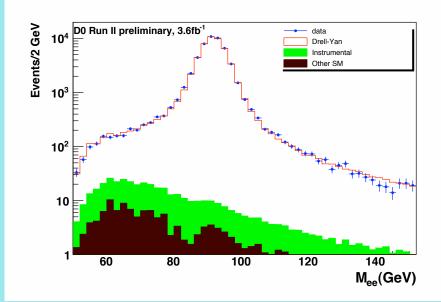

Di-EM Large Extra Dimensions

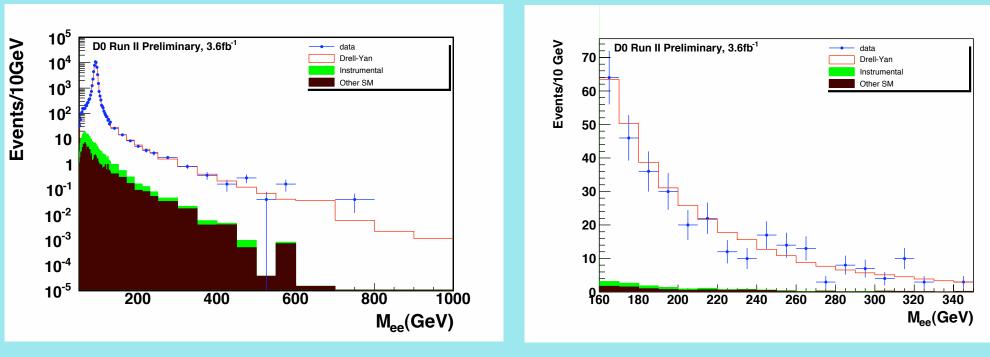
- Cood agreement between data and background
 - Compare di-EM invariant
 mass spectrum and | cosθ* |
 distribution for data and
 signal + background
 - Set 95% CL limits for LED with n = 2, ..., 7 and extract limits on the effective Planck scale Ms

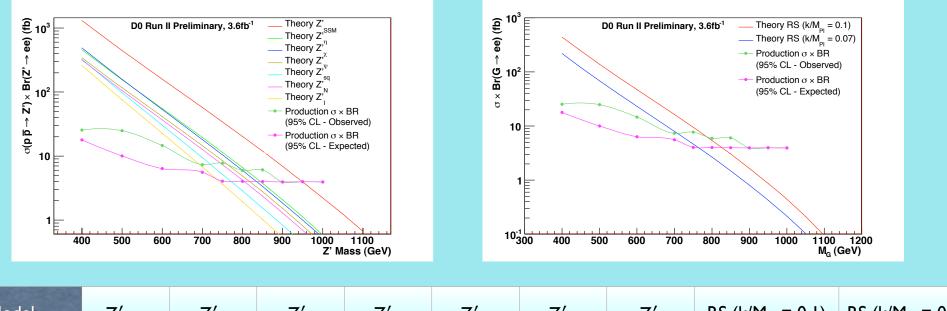
n	2	3	4	5	6	7
Observed Limit M(s) (TeV)	2.09	1.94	1.62	1.46	1.36	1.29
Expected Limit M(s) (TeV)	2.16	2.01	1.66	1.49	1.38	1.31



Ioannis Katsanos, UNL


- * Preliminary result based on 3.6 fb⁻¹ of data
- * Looking into the high E_T di-electron mass distribution
- * Event selection
 - * Two isolated EM objects
 - $* E_{\rm T} > 25 \, {\rm GeV}$
 - * Shower shape consistent with that of the EM objects
 - * Central ($|\eta| < 1.1$)
 - * Track matched

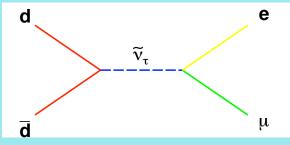

- ***** Backgrounds
 - * Physics
 - * $Z/\gamma^* \rightarrow ee$ (Dominant Background)
 - * $Z/\gamma^* \rightarrow \tau\tau, W+X \rightarrow e\nu+X,$ WW $\rightarrow ee\nu\nu, WZ$ where $Z \rightarrow ee,$ $t\bar{t} \rightarrow ee\nu\nu b\bar{b}$ ("Other SM")
 - * Studied in MC
 - * Instrumental
 - * Jets misidentified as EM objects
 - * Studied from data by inverting the shower shape criteria to estimate the shape of the instrumental background
- * Fit di-electron invariant mass spectrum to the sum of the backgrounds


- * There is a good agreement between data and expected total background for the full mass range studied
 - * Since no significant excess is observed, proceed with setting limits

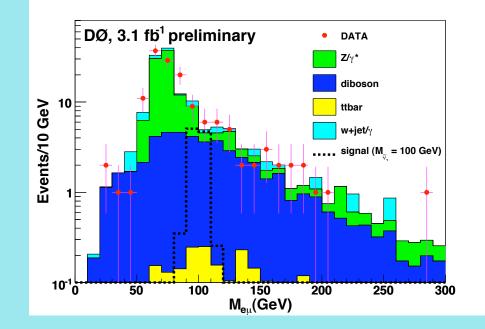
Ioannis Katsanos, UNL

- * Set 95% CL upper limits on $\sigma \times BR(X \rightarrow ee)$, where X is a heavy resonance with spin 1 (Z'), or 2 (G_{RS}) for $M_X \ge 400$ GeV
 - * Interpret this limit to lower mass limits for a variety of models

Model	Z' _{SSM}	Ζ′η	Z′ _X	Z'_{Ψ}	Z'_{sq}	Ζ′ _N	Ζ′ι	RS $(k/M_{Pl} = 0.1)$	RS ($k/M_{Pl} = 0.07$)
Expected Lower Mass Limit (GeV)	949	844	834	817	774	803	732	826	767
Observed Lower Mass Limit (GeV)	950	810	800	763	719	744	692	786	708

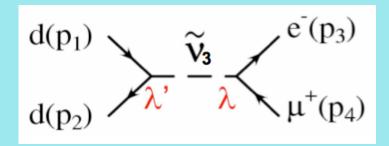

Ioannis Katsanos, UNL

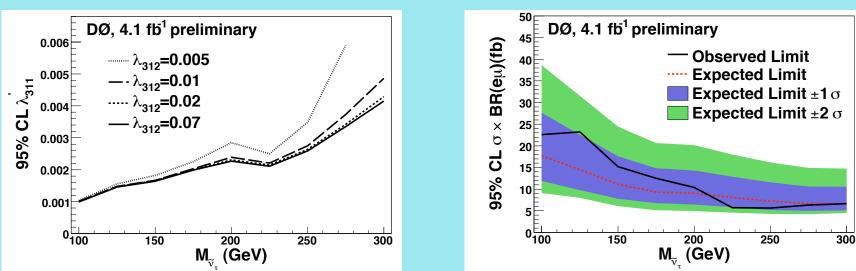
- * Preliminary result based on 4.1 fb⁻¹ of data
- * Looking for high E_T leptons, where electron and muon are back-to-back, and no MET is present
- * Event selection
 - * Electron
 - * Isolated EM candidate
 - $* E_{\rm T} > 30 \, {\rm GeV}$
 - * Shower shape consistent with that of an electron
 - * Central ($|\eta| < 1.1$)
 - * Track matched
 - * Muon
 - * Isolated muon candidate in both calorimeter and tracker
 - $* E_{\rm T} > 25 \, {\rm GeV}$
 - $* |\eta| < 2.0$
 - * Track matched



- ***** Backgrounds:
 - ***** Physics
 - $* Z/\gamma^* \rightarrow \tau \tau$
 - * WW, WZ, ZZ
 - * tī
 - * Instrumental
 - * W+jet/ γ
 - ∗ Z/γ^{*}→ee, µµ
 - * multijet
 - * All background contributions except for the multijets are studied in MC. Multijets are studied from data, by selecting a sample rich in fakes

Ioannis Katsanos, UNL




Background	
Z/γ*	83 ± 3
di-boson	46 ± 2
W + jet/γ	13 ± 2
tī	3 ± 0
Total Background	145 ± 4
Data	143

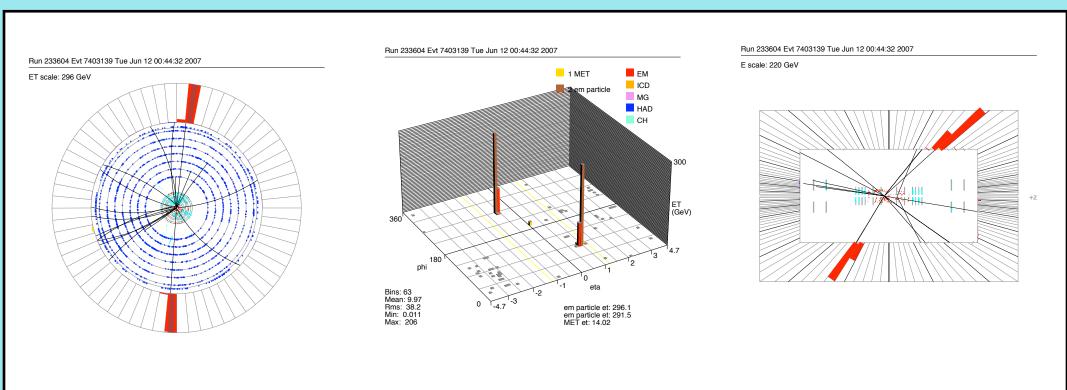
- * Good agreement between data and background
- Proceed with setting 95% CL limits on the production cross-section and RPV couplings as a function of the sneutrino mass

Ioannis Katsanos, UNL

Summary and Outlook

- * Presented searches for New Phenomena with the D0 detector using final states with leptons, photons, and MET
- * No excess of events over the SM expectations observed up to 4.1 fb⁻¹ of data analyzed
- * Search for sign of new physics continues
 - * D0 detector is well understood
 - * Already about 6 fb⁻¹ have been recorded and are being analyzed
 - * Expect to collect 10 12 fb⁻¹ of data in the next couple years
- * http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

* BACKUP SLIDES


Ioannis Katsanos, UNL

Di-electron Event

$M_{ee} = 766 GeV$

Ioannis Katsanos, UNL

$$\frac{d(p_1)}{d(p_2)} \underbrace{\searrow_{\lambda'}}_{\lambda'} \underbrace{\widetilde{\nu_3}}_{\lambda} \underbrace{\swarrow_{\mu^+(p_4)}}^{e^-(p_3)}$$

* The cross-section of the signal only depends on the third generation sneutrino mass and the LQD and LLE couplings:

$$\hat{\sigma}_{e\mu} \propto \left(\lambda_{311}'\right)^2 \times \left(\lambda_{312}'\right)^2 \cdot \frac{1}{\left\|\begin{array}{c}1\\ \| & M^2 + \prod M \right\|^2}$$

where the total width of the sneutrino can be written as:

$$\Gamma = \left[3 \cdot \left(\lambda_{311}'\right)^2 + 2 \cdot \lambda_{312}^2\right] \cdot \frac{M}{16\pi}$$

Ioannis Katsanos, UNL