Searches for Quark Compositeness and Heavy Resonances in Hadronic Final States

> Dmitri Smirnov University of Notre Dame

on behalf of the D0 Collaboration

July 31, 2009

DPF Meeting, July 27-31, 2009

Searches Beyond the Standard Model ^{1 of 13}

- The Standard Model is incomplete
- New models try to explain observed anomalies in astrophysics and direct dark matter searches, as well as predicting collider signatures
- In general, a model independent search assumes modification of the SM Lagrangian by a term representing new physics (NP):

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}_{\mathsf{NP}}$$

• The cross section for new physics models includes

$$d\sigma \propto |\mathcal{M}_{\mathsf{SM}} + \mathcal{M}_{\mathsf{NP}}|^2 d\Phi|$$

• This approach allows physicists to study new interactions before a consistent theory is formulated

DPF Meeting, July 27-31, 2009

2 of 13 The Fermilab Tevatron Collider and D0 Detector

DPF Meeting, July 27–31, 2009

W' Production

- Composite and Little Higgs models, GUTs, UED, Technicolor, . . .
- LO production channels
 - s-channel, t-channel, and associated production
 - The s-channel (resonance) is most interesting since W' contribution to the other channels is too small

• Effective Lagrangian $\mathcal{L} = \frac{V_{ij}}{2\sqrt{2}} g_W \bar{f}_i \gamma^{\mu} \left(\mathbf{a_{ij}^R}(1+\gamma^5) + \mathbf{a_{ij}^L}(1-\gamma^5) \right) W' f_j + h.c.$

 $\mathbf{a_{ij}^R}$ and $\mathbf{a_{ij}^L}$ are left and right couplings to quarks

DPF Meeting, July 27-31, 2009

Dmitri Smirnov

W' Interference with the SM

• Only $W'_{\rm L}$ interferes with the SM W

$$\sigma = \sigma_{\mathsf{SM}} + \mathbf{A}^{\mathbf{L}} \cdot \sigma_{W/W'_{\mathsf{L}}} + \mathbf{A}^{\mathbf{L},\mathbf{R}} \cdot \sigma_{W'}$$

- Interference contributes as much as 16-33% of the total rate
 - W/W^\prime interference is generated with the CompHEP MC generator
- W'_R can decay leptonically if $M_{\nu,R} < M_{W'_R}$
- \bullet Assume the coupling of the W' to quarks is identical to that of the SM W
- Single top production is the ideal channel to search for W^\prime decaying hadronically

• Relatively small QCD background in comparison to light jet channels

DPF Meeting, July 27–31, 2009

Dmitri Smirnov

Event Selection and Backgrounds

- q' W' t v b 1 v b
- Data sample used $\mathcal{L} = 0.9 \text{ fb}^{-1}$
- Event topology similar to single top searches
- Largest backgrounds come from $W+{\rm jets}$ and $t\bar{t}$
 - Reduce $t\bar{t}$ background by restricting analysis to 2-3 jets
- 0.3 units - W+jets • High p_T electron or muon, large missing arbitrary ע 52.0 energy $\not\!\!E_T$ from neutrino, and up to two tt t-channel b-jets --- W' (700GeV) Two or three jets with $p_T > 15$ GeV 0.15 ---- W' (800GeV) • $E > 15 \,\,{\rm GeV}$ • Leading jet $p_T > 25$ GeV and $|\eta| < 2.5$ 0.1 • Second leading jet $p_T > 20 \text{ GeV}$ 0.05 Lepton $p_T > 15$ GeV • At least one b-jet 200 400 1000 600 800 √ŝ [GeV]

Dmitri Smirnov

Data and Background Comparison

Process	Events	
	$SM+W'_L$ search	W'_R search
Single top	6.4 ± 1.4	10.2 ± 2.2
$t\bar{t}$	59.1 ± 14.4	
W+jets	91.0 ± 18.8	
Multijets	$29.7 \pm$	5.9
Total background	186.1 ± 40.4	190.0 ± 41.2
Data	182	

DPF Meeting, July 27-31, 2009

- $\sqrt{\hat{s}}$ includes quark jets, lepton, and neutrino from the top quark and subsequent W boson decays
- Observe no significant excess in the final state invariant mass distribution

Limits on W' Production Cross Section

- Use √ŝ distributions to set limits separately for models with left and right W'
 Phys. Rev. Lett. 100, 211803 (2008)
 - $M(W_L') > 731 \; {
 m GeV}$
 - $M(W_R') > 768 \text{ GeV}$ if $M_{\nu} > M_{W'}$
 - $M(W_R') > 739 \text{ GeV}$ if $M_{\nu} < M_{W'}$

- Previous D0 results (230 pb⁻¹)
 Phys. Lett. B 641 (2006)
 - $M(W'_L) > 610 \,\,{\rm GeV}$
 - $M(W_R') > 670 \text{ GeV}$ if $M_{\nu} > M_{W'}$
 - $M(W'_R) > 630 \text{ GeV}$ if $M_{\nu} < M_{W'}$

Dmitri Smirnov

W' Coupling Strength

- The observed limits can be converted into limits on the W^\prime coupling strength
- The leading order s-channel production process has two W'qq vertices. Therefore,

$$\sigma(p\bar{p} \to W') \times \mathsf{Br}(W' \to tb) \propto g'^4$$

- W' coupling strength limit is calculated from the fourth root of the ratio of the experimentally excluded W' cross section and the cross section with SM couplings
- For $M_{W'} = 600$ GeV we exclude gauge couplings at 95% C.L.
 - $g'/g_W > 0.68$ if $M_{\nu} > M_{W'}$
 - $g'/g_W > 0.72$ if $M_{\nu} < M_{W'}$

DPF Meeting, July 27-31, 2009

Dmitri Smirnov

Search for Quark Compositeness and Extra Dimensions ^{9 of 13}

• The cross section for new physics can be expressed:

$$\sigma = \sigma_{\rm SM} + \eta \cdot \sigma_{\rm int} + \eta^2 \cdot \sigma_{\rm NP},$$

- $\eta = \lambda / \Lambda^2$ for compositeness, Λ is compositeness scale
- $\eta = \mathcal{F}/M_S^4$ for ADD LED, M_S is the fundamental Planck scale
- $\eta = 1/M_c^2$ for TeV⁻¹ ED, M_c is the compactification scale

DPF Meeting, July 27–31, 2009

Analysis Bins

10 of 13

- Use 10 dijet mass bins in the range from 0.25 to \sqrt{s}
- \bullet Covering rapidity up to ~ 2.4

DPF Meeting, July 27-31, 2009

Event Selection and Backgrounds

11 of 13

- Data sample used $\mathcal{L} = 0.7 \text{ fb}^{-1}$
- Jets are defined with a cone jet algorithm with R=0.7
- The jets energy is corrected for showers and multiple $p\bar{p}$ interactions
- Difference in electron/photon and real jet showers is used to suppress the background
- Fraction of background events is below 0.1% in all mass bins

Dijet Angular Distributions and Limits

- Data are well described by the NLO pQCD
- New physics models change shape in $\chi_{\rm dijet}$ at higher $M_{\rm dijet}$
- Quark compositeness
 - $\Lambda > 2.2 \text{ GeV}$ at 95% C.L.
- TeV⁻¹ extra dimensions
 - $M_s > 1.4 \text{ GeV}$ at 95% C.L.
- ADD large extra dimensions
 - $M_c > 1.3 \text{ GeV}$ at 95% C.L.

Submitted to PRL arXiv.org:0906.4819

Dmitri Smirnov

Conclusions

13 of 13

• D0 has performed a model independent search for compositeness, LED, and W' resonance in hadronic decay channel with 0.7 and 0.9 fb⁻¹ of data respectivelly

- More than 5 times of data available now
- Better analysis techniques and more statistics improved previously reported Tevatron results
 - Many data-driven methods to estimate background
 - Valuable experience for upcoming LHC data
- No indication of new physics detected. . .
 - ... but the search continues with more data available!

DPF Meeting, July 27–31, 2009