Inclusive & Exclusive B Decays with Radiative and Electroweak Penguins at Belle

Kurtis Nishimura University of Hawaii at Manoa DPF 2009, Detroit

DPF 2009

Outline

- Introduction
- Radiative penguin decays:
 - \circ Inclusive: $b
 ightarrow s \gamma$
 - Exclusive: $B \to K \eta' \gamma$
- Electroweak decays:
 - Exclusive: $B \to K^{(*)}\ell\ell$
- Summary

Introduction

$$\blacktriangleright \ b \to s \gamma$$
 , $b \to s \ell \ell$

RFLLE

- Flavor changing neutral current (FCNC) processes, forbidden at tree level → sensitive to new physics.
- For $b \rightarrow s\gamma$, via radiative penguin:

W

• For $b \to s\ell\ell$, via Z/ γ penguin or W⁺/W⁻ box diagram:

Radiative and Electroweak Penguins @ Belle

 W^{-}

Introduction

BELLE

 Belle detector, KEKB collider @ KEK in Tsukuba, Japan
 Belle Detector

Penguins @ Belle

Inclusive b \rightarrow s γ Reconstruction

- Fully inclusive measurement:
 - \circ Only γ reconstructed on signal side, ${\rm E}_{\gamma}{\rm \, cms}>$ 1.4 GeV
 - Two streams: with lepton from tag side (NEW) and without
 - Lepton tag helps to reduce continuum background

$b \rightarrow s \gamma$ Backgrounds

Continuum

- Suppressed w/ Fisher discriminants based on energy-flow and event-shape.
- Remaining continuum subtracted using offresonance data:

arXiv:0907.1384, subm. to PRL

b \rightarrow **s** γ **Backgrounds**

- Non-continuum backgrounds:
 - γ from π^0 , η (after vetoes)
 - Other real γ (e.g., from ω , J/ ψ , η')
 - Mis-IDed e⁻ as γ
 - Other non- γ ECL clusters
 - Beam background
- Control samples in data:
 - $\mathbf{B} \rightarrow \pi^{\mathrm{o}} \mathbf{X}, \ \eta \mathbf{X}$
 - Used to correct MC shapes/yields
 - $D^0 \rightarrow K^- \pi^+ \pi^0$

RFI I F

- Used to study veto efficiencies
- Timing information used to study/suppress pile-up events (hadronic + Bhabha)
- Beam background studied w/ random triggers.

after vetoing π^0 , $\eta \rightarrow \gamma \gamma$

$b \rightarrow s \gamma Spectra$

RELLE

Raw spectra without & with lepton tags

RFI I F

Penguins @ Belle

Exclusive b \rightarrow s γ : B \rightarrow K $\eta' \gamma$

- Not yet observed.
- Exclusive modes useful to check hadronisation models for $B \rightarrow X_s \gamma$, $B \rightarrow X_s II$
- Sufficient statistics with $K_s \eta' \gamma$ would allow search for time dependent CPV (right-handed currents).
- Reconstruction:

0

$$B \rightarrow K \eta' \gamma$$

$$\rightarrow \eta \pi^{+} \pi^{-}$$

$$\rightarrow \gamma \gamma$$

$$\rightarrow \pi^{+} \pi^{-} \pi^{0}$$

$$\rightarrow \rho^{0} \gamma$$

- M(Kη') < 3.4 GeV</p>
- Veto $D^0 \rightarrow K^- \pi^+$
 - 1.84 < M(K π) < 1.89 GeV/c²

· Veto J/
$$\psi$$
 → $\eta'\gamma$
· 3.07 < M($\eta'\gamma$) < 3.12 GeV/c²

> 2D fit performed on M_{bc}, ∆E
 Submodes are combined for fitting.

Exclusive $b \rightarrow sII : B \rightarrow K^{(*)} I^+I^-$

- Reconstruction in 10 final states:
 - $B \rightarrow K^{(*)} | + | -$ • e^+e^- *Electron bremsstrahlung photons recovered • $\mu^+ \mu^-$ (w/i 50 mrad cone, 20 < E_{γ} < 500 MeV) • $K^+\pi^-$, $K_S\pi^+$, $K^+\pi^0$, K^+ , K_S
- Backgrounds:
 - Continuum & semi-leptonic decays: suppressed with Fisher discriminant based on event-shape, M_{miss}
 - $\circ~B \rightarrow DX$: veto on $M_{K\mu}$ and $M_{K\mu\pi}$
 - $\mathbf{B} \rightarrow \mathbf{J}/\psi$ (ψ ') X : vetoes on q² regions:
 - 8.68 < q² < 10.09 ; 12.86 < q² < 14.18 for $\mu^+\mu^-$
 - + 8.11 $< q^2 < 10.03$; 12.15 $< q^2 < 14.11$ for e^+e^-
- > 2D fit in M_{bc} and $M_{K\pi}$ in 6 bins of q^2

Branching Fractions for $B \rightarrow K^{(*)} I^+I^-$

▶ Total branching ratios: $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (10.7^{+1.1}_{-1.0} \pm 0.9) \times 10^{-7}$ $\mathcal{B}(B \to K \ell^+ \ell^-) = (4.8^{+0.5}_{-0.4} \pm 0.3) \times 10^{-7}$

- Lepton flavor ratios:
 - Definition:

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \rightarrow K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \rightarrow K^{(*)} e^+ e^-)}$$

- Sensitive to Higgs emission, photon pole, potential NP.
- Measured / SM values:

$$\begin{split} R_{K^*} &= 0.83 \pm 0.17 \pm 0.07, R_{K^*}^{SM} = 0.75 \\ R_K &= 1.03 \pm 0.19 \pm 0.06, R_K^{SM} = 1.0 \end{split}$$

arXiv:0904.0770, subm. to PRD (RC)

F_L , A_{FB} , and A_I for $B \rightarrow K^* I^+I^-$

- Longitudinal polarization fraction (F_L) for K*II
 - Extracted from θ_{K^*} (angle between K and opposite of B flight directions in K^{*} rest frame):

$$\frac{d\Gamma}{d\cos\theta_{K^*}} = \frac{3}{2}F_L\cos^2\theta_{K^*} + \frac{3}{4}(1 - F_L)(\sin^2\theta_{K^*})$$

- Forward-backward asymmetry (A_{FB}) for K*II
 - Extracted from θ_{BI} (angle between lepton and opposite of B flight directions in dilepton rest frame).

 $\frac{d\Gamma}{d\cos\theta_{B\ell}} = \frac{3}{4}F_L\sin^2\theta_{B\ell} + \frac{3}{8}(1-F_L)(1+\cos^2\theta_{B\ell}) + A_{FB}\cos\theta_{B\ell}$

Isospin asymmetry (A_I) for both K*II and KII.

$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(K^{(*)0}\ell^{+}\ell^{-}) - \mathcal{B}(K^{(*)\pm}\ell^{+}\ell^{-})}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(K^{(*)0}\ell^{+}\ell^{-}) + \mathcal{B}(K^{(*)\pm}\ell^{+}\ell^{-})}$$

Lifetime ratio (1.071)

arXiv:0904.0770, subm. to PRD (RC)

 F_L , A_{FB} , and A_I for $B \rightarrow K^* I^+I^-$

- K*II longitudinal polarization fractions (F_L):
 - Consistent with SM.
- K*II forward-backward asymmetry (A_{FB}):
 - ~2.7 σ diff. from SM, hints at possible C₇ \rightarrow -C₇SM
- Isospin-asymmetry (A_I):
 - Consistent with SM.

RFI I F

• Combined for $q^2 < 8.68$

 $A_I(B \to K^* \ell^+ \ell^-) = -0.29^{+0.16}_{-0.16} \pm 0.09 \quad \sigma = 1.37$ $A_I(B \to K \ell^+ \ell^-) = -0.31^{+0.17}_{-0.14} \pm 0.08 \quad \sigma = 1.75$ $A_I(B \to K^{(*)} \ell^+ \ell^-) = -0.30^{+0.12}_{-0.11} \pm 0.08 \quad \sigma = 2.22$

arXiv:0904.0770, subm. to PRD (RC)

: J/ ψ (ψ ') veto regions

- : SM expectation ($C_7 = C_7^{SM}$)

---- : Sign-flipped C_7 ($C_7 = -C_7^{SM}$)

Summary

- Inclusive b \rightarrow s γ branching ratio: arXiv:0907.1384, subm. to PRL
 - $\mathcal{B}(B \to X_s \gamma; 1.7 GeV < E_{\gamma} < 2.8 GeV) = (3.47 \pm 0.15 \pm 0.40) \times 10^{-4}$
 - Consistent w/SM, strongly constrains NP (e.g., charged Higgs mass)
- Fixed base in the submetries of the submetries
 - First evidence for $B^+ \rightarrow K^+ \eta' \gamma$ $\mathcal{B}(B^+ \rightarrow K^+ \eta' \gamma; M_{K\eta'} < 3.4 GeV/c^2) = (3.6 \pm 1.2 \pm 0.4) \times 10^{-6}$
 - 90% CL upper limit for $B^0 \rightarrow K_S \eta' \gamma$ $\mathcal{B}(B^0 \rightarrow K^0 \eta' \gamma; M_{K\eta'} < 3.4 GeV/c^2) < 6.4 \times 10^{-6}$
- Exclusive $B \rightarrow K^{(*)}|^+|^-$ arXiv:0904.0770, subm. to PRD (RC)
 - Lepton flavor ratios, longitudinal polarization fraction, isospin asymmetry consistent with SM.
 - Forward backward asymmetry \rightarrow opposite sign C₇?
 - Need more luminosity: e.g., Super KEKB / Belle-II, LHCb

>>> Backup

 $B \rightarrow K^{(*)}||$

BELLE

$\mathsf{B} \to \mathsf{K}^{(*)}\mathsf{I}\mathsf{I}$

BELLE

 $B \rightarrow K^{(*)} \parallel$

20

Wilson coefficients and $B \to K^* \ell^+ \ell^-$

- Wilson coefficients to identify type of new physics
 - C_7 for magnetic penguin operator $\left[\frac{e}{8\pi^2}m_b\overline{s}_i\sigma^{\mu\nu}(1+\gamma_5)b_iF_{\mu\nu}\right]$
 - (size is determined from $b \rightarrow s\gamma$, but sign is from $b \rightarrow s\ell^+\ell^-$)
 - C_9 for vector electroweak operator $[(\overline{b}s)_{V-A}(\overline{\ell}\ell)_V]$
 - C_{10} for axial-vector electroweak operator $[(\overline{bs})_{V-A}(\overline{\ell}\ell)_A]$
- Foward-backward asymmetry ($A_{\rm FB}$) and Wilson coefficients

$$A_{\rm FB}(q^2) = -C_{10}^{\rm eff}\xi(q^2) \left[Re(C_9^{\rm eff})F_1 + \frac{1}{q^2}C_7^{\rm eff}F_2 \right] \quad \text{(sin formation of the set of the set$$

(similar to γ -Z interference at high energy)

Angular distributions to extract FB asymmetries

 $\begin{array}{l} K^* \text{ logitudinal polarization } F_L \text{ from kaon angle } \theta_K \\ & \frac{3}{2}F_L\cos^2\theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_K) \\ \text{Forward-backward asymmetry } A_{\text{FB}} \text{ from lepton angle } \theta_\ell \\ & \frac{3}{4}F_L(1 - \cos^2\theta_\ell) + \frac{3}{8}(1 - F_L)(1 + \cos^2\theta_\ell) + A_{\text{FB}}\cos\theta_\ell \end{array}$

21

RFLLE