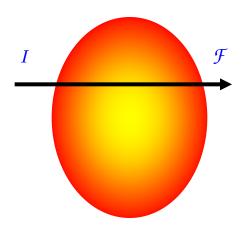


Rainer Fries Texas A&M University & RIKEN BNL

DPF 2009 Detroit MI July 31, 2009


Overview

- From flavor conversions to jet chemistry
- Results for protons, photons, strangeness, charm
- Elliptic Flow

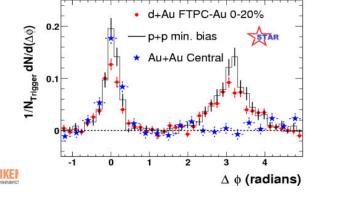
Jets and Hard Probes

How do we know what's in a black box? Send in a probe!

- $\hfill\square$ Compute/measure the initial state I, measure the final state F
- Compare to expectations.
- $\hfill\square$ Observables \leftrightarrow transport coefficients of the medium
- QGP in nuclear collisions: too short-lived to interact with a third particle beam.
- Use penetrating probes that are naturally occurring in the very same high energy collision: QCD jets!

Jet Quenching

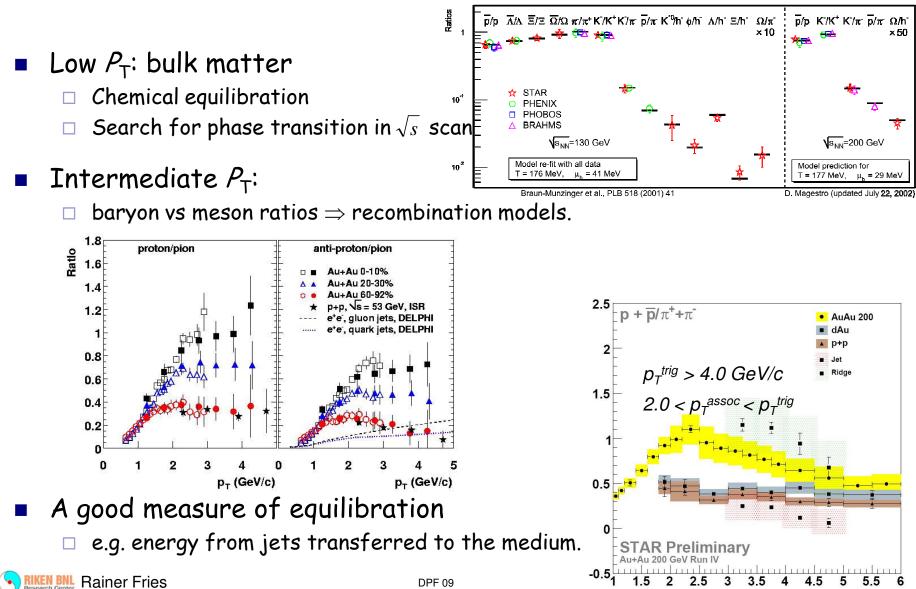
Accessible so far: drag and diffusion in the medium


- Drag force on fast partons (energy loss) via collisions or radiation
- Transverse broadening and other transverse dynamics.
- Energy loss \leftrightarrow momentum transfer in collisions, transport coefficient $\hat{q} = \frac{\mu^2}{r}$


Observables for "jet quenching":

- Suppression of single particle spectra.
- Away-side jets and other two-particle correlations
- 🗆 Jet yields, ...

Current status at RHIC:

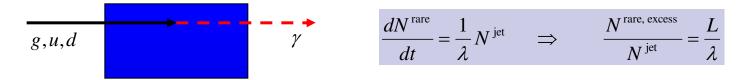

F

New Degrees of Freedom: Flavor

- What else can we observe related to hard probes?
- Measure changes in chemical composition of jets.
- Identity (flavor) of a parton can change when interacting with the medium.
 - Pair production and radiation
 - Exchange of particles
- "Flavor" here defined by the leading jet parton.
 - We use a generous definition of flavor: gluons g; light (q) and strange quarks (s), heavy quarks (Q), real and virtual photons (γ).
- Hadronization: parton chemistry \rightarrow hadron chemistry at high p_{T}
 - Hadronization washes out signals in parton chemistry; need robust flavor signals on the parton side.

F

Hadro-Chemistry

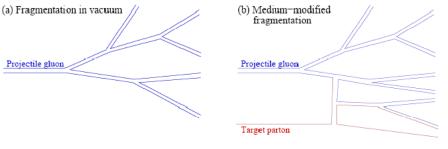


ы

p_T (GeV/c)

What can we learn from jet chemistry?

- Flavor conversions are ...
 - □ ... not very sensitive to the momentum transfer with the medium.
 - \Box ... sensitive to the mean free path λ .
- A chance to get our hands on a quantity complementary to $\hat{q} = \frac{\mu^2}{2}$.
- Example: rare "flavor" (not contained in the medium), which can be produced off the medium
 - E.g. photons through Compton scattering and annihilation of jets in the medium.
- $q + \overline{q} \to \gamma + g$ $q + g \to \gamma + q$



In this idealized situation: direct access to λ .

From Jets to Hadrons

The picture here:

- Parton propagation through the medium with elastic or inelastic interactions.
- After any collision: final state parton with the highest momentum is the new leading parton ("the jet")
- \Rightarrow Study changing chemistry in ensemble of jets coupling to the medium.
- \Box Vacuum hadronization: parton chemistry \rightarrow hadron chemistry
- Caveat: hadronization itself might be changed.
 - Gives rise to a complementary mechanism: changing chemistry inside a single jet cone due to increased multiplicities
 - Both mechanisms should be considered for a full picture.

[e.g. Sapeta and Wiedemann, EPJ C55 (2008), ...]

Quark-Gluon Conversions

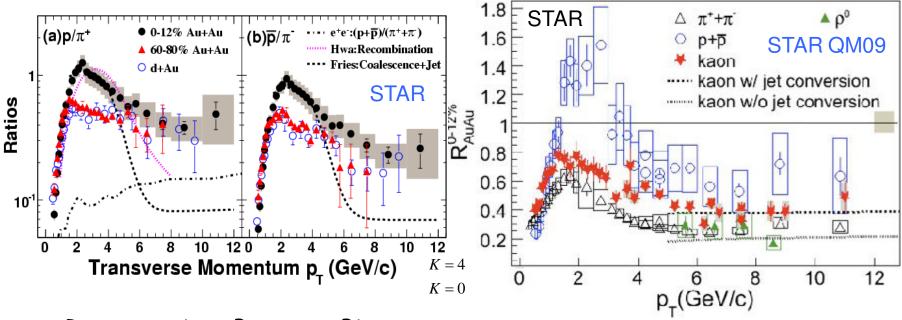
Possible pair annihilation/creation and Compton like processes lead to quark \leftrightarrow gluon conversions

 $q + \overline{q} \leftrightarrow g + g$ [Ko, Liu, Zhang] [Liu, RJF] $q + g \leftrightarrow g + q$

Motivation: search for relative guenching factor 9/4 [Ko, Liu, Zhang] Will be washed out if $\lambda \sim$ system size or smaller 0.5 a. ---- a w/o conv. g, ••••• q K_=1 Elastic $g \leftrightarrow q$ conversions: 0.4 q K_=4 Find effective conversion of quark to gluon jets at $q K_c = 6$ _≹ 0.3 RHIC energies (30% of quark jets lost). Ľ Find K factor > 1 needed to get rid of the 0.2 difference in quark-gluon suppression. How does it translate into hadrons? 0.1 8 2 6 10 Rainer Fries p_T (GeV/c)

Quark-Gluon Conversions: Estimates

- Potential signature: differences in quark vs gluon fragmentation into pions and protons.
 - □ Should result in more suppression of protons vs pions.
 - □ Expect uncertainties from fragmentation functions.


p/π⁺ Ratio

Decrease dependence on fragmentation functions by using double ratios $(n/\pi^{+}) = R^{p}$

$$\gamma_{p/\pi^{+}} = \frac{(P/\pi^{+})_{AA}}{(p/\pi^{+})_{pp}} = \frac{\pi_{AA}}{R_{AA}^{\pi^{+}}}$$
Recombination region

Au+Au @ 200 GeV

Au+Au @ 200 GeV

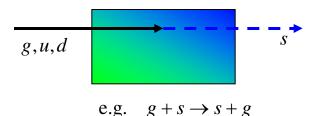
 $h = - w/o conv$

Au+Au $s_{NN}^{1/2} = 200 \text{ GeV}$

 $h = - w/o conv$

 $h = - w/$

Quark Gluon Conversions: Data

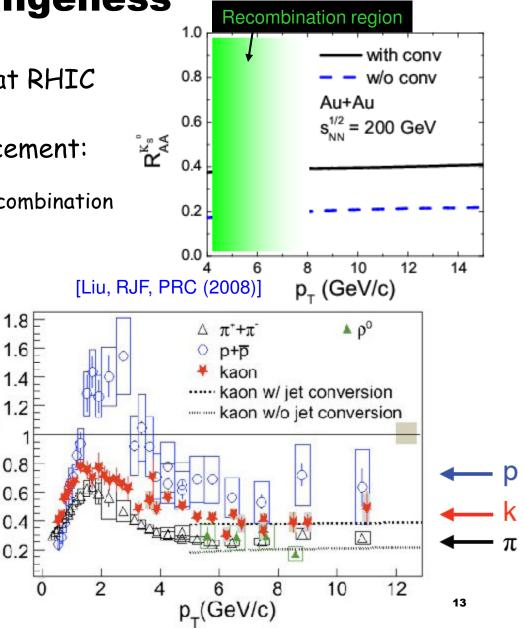

Most recent PHENIX and STAR data:

- R_{AA} surprise: Proton > Pion
 - Could mean additional source of protons even at 10 GeV/c.
 - Recombination?

Rare "Flavors"

- Rare probes: not chemically equilibrated in the jet spectrum.
- Obvious example: photons and dileptons
 - □ Need enough yield from conversions to outshine other sources of N^{rare}.
- Another class: flavor chemically equilibrated in the medium but not in the jet sample
- True for strangeness at RHIC:

$$w_{jet} = \left(\frac{s}{u+d}\right)_{jet} \approx 5\% \qquad @ 10 \text{ GeV for RHIC}$$
$$w_{ce} = \left(\frac{s}{u+d}\right)_{medium} \approx 50\%$$


 Coupling of (not equilibrated) jets to the equilibrated medium should drive jets towards chemical equilibrium.

Strangeness

- Expect s-jet enhancement at RHIC
- Translates into kaon enhancement:
 - Caution: would like to avoid recombination effects.
 - \Box Check above 6-8 GeV/c.
- New STAR result:

RIKEN BNL Rainer Fries

- □ Kaon enhancement seen between 6 and 10 GeV/c.
- A first unambiguous signal for conversions?

LHC, Heavy Quarks

1.0

0.8

0.6

0.4

0.2

Å^K₅°

[Liu, RJF, PRC (2008)]

with conv

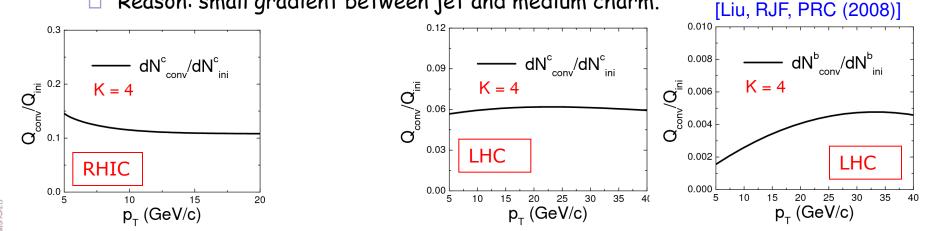
w/o conv

= 5.5 TeV

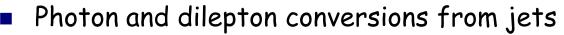
30

35

40


Pb+Pb

15


20

p_T (GeV/c)

- Kaons at LHC: find no enhancement
 - Reason: strangeness in initial jet sample almost equilibrated.
 - Maybe it works with charm?
- RHIC: conversion to heavy quarks marginal. 0.0 10
- LHC: charm does not act like strangeness at RHIC, conversion yields are small.
 - Reason: small gradient between jet and medium charm.

Photons and Dileptons

 10^{-4}

 10^{-5}

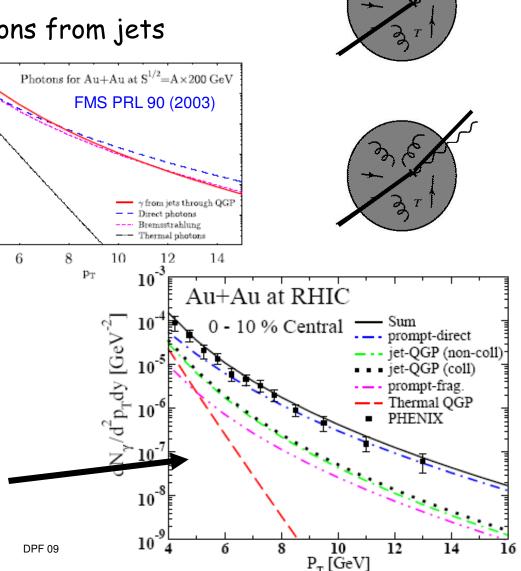
10⁻⁶

10-7

 10^{-8}

 10^{-9}

10-10

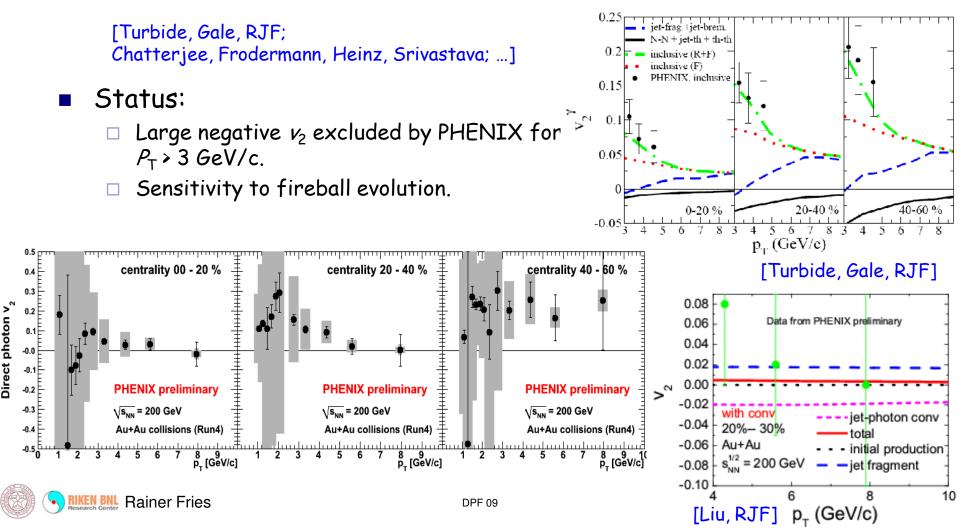

 $iN / d^2 p_T dy [GeV^2]$

See talks by C. Gale,
 G. David

[RJF, Müller, Srivastava; Srivastava, Gale, RJF; Zakharov;.....; Zhang, Vitev]

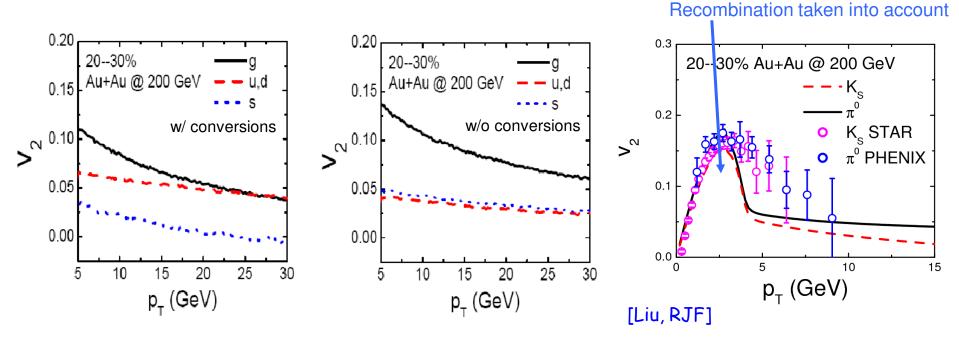
- First estimate:
 - □ Competitive photon sources for $P_T \sim 4-6$ GeV at RHIC energies, even more important at LHC.
- Experimental situation:
 Not resolved
- State of the art calculation

[Turbide, Gale, Frodermann, Heinz]


Elliptic Flow v_2

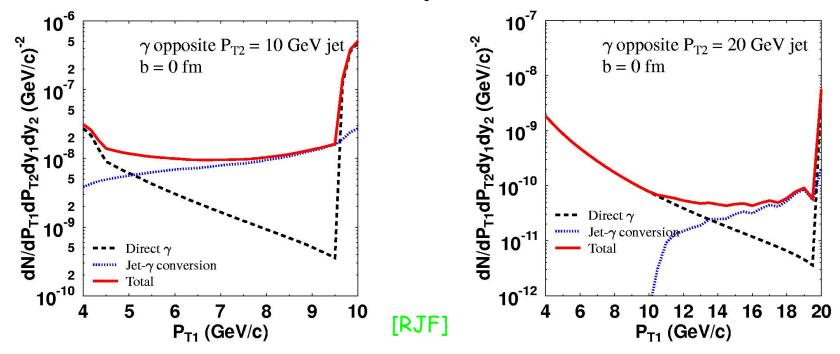
- Azimuthal anisotropy for finite impact parameter.
- Three different mechanisms:

	Initial anisotropy	Final anisotropy	Elliptic flow v2	
Bulk	pressure gradient	collective flow	<i>v</i> ₂ > 0	
saturated high- <i>P</i> _T probe	path length	quenching	<i>v</i> ₂ > 0	
rare high-P _T probe	path length	additional production [Turbide, Gale &	v₂ < 0 RJF, PRL 96 (2006)]	


Photon Elliptic Flow

• Have to add other photon sources with vanishing or positive v_2 .

Strangeness Elliptic Flow


- Elliptic flow argument also holds for rare probes that are driven toward chemical equilibration while traversing the medium.
- Expect suppression of kaon v_2 outside of the recombination region.

Last Comment on Photons

- Instead of using photons to measure jet modification: use jets to disentangle photon sources.
- Photons opposite 10 and 20 GeV jets.

See also recent work by the McGill group. [Qin et al. (2008)]

Summary

- Flavor changing processes are present in jet-medium interactions.
- Jet chemistry contains information complementary to jet quenching measurements. Mean free path measurements?
- Potential signatures:
 - Quark-gluon conversions: compatible with absence of increased proton suppression as seen by STAR.
 - Conversion photons and dileptons: good agreement with data, but alternative explanations not ruled out
 - Enhanced strangeness at RHIC: first direct indication for conversion?
 - \square Photon, dilepton and kaon ν_2 : awaiting final verdict
 - Future: photon-hadron or photon-jet correlations
- Better calculations:
 - Event generators

Backup

Conversion Rates

Coupled rate equations for particle numbers (flavors a, b, c, ...)

$$\frac{dN^{a}}{dt} = -\sum_{b} \Gamma^{a \to b}(p_{T}, T)N^{a} + \sum_{c} \Gamma^{c \to a}(p_{T}, T)N^{c}$$

Reaction rates

$$\Gamma_{C} = \frac{1}{2E_{1}} \int \frac{\mathbf{g}_{2}d^{3}p_{2}}{(2\pi)^{3}2E_{2}} \frac{d^{3}p_{3}}{(2\pi)^{3}2E_{3}} \frac{d^{3}p_{4}}{(2\pi)^{3}2E_{4}} f(p_{2}) [1 \pm f(p_{4})] \overline{\left| M_{12 \to 34} \right|^{2}} (2\pi)^{4} \delta^{(4)} \left(p_{1} + p_{2} - p_{3} - p_{4} \right)$$

Here: elastic channels

$$q + \overline{q} \leftrightarrow g + g$$

$$q + g \leftrightarrow g + q$$

$$q + \overline{q} \rightarrow \gamma + g$$

$$q + g \rightarrow \gamma + q$$

$$g + Q \leftrightarrow Q + g$$

$$g + g \leftrightarrow Q + \overline{Q}$$

Quark / gluon conversions

Photons and dileptons; inverse reaction negligible

Heavy quark creation/acceleration