RHIC Heavy Ion Program (in the Next Decade)

James Dunlop
Brookhaven National Laboratory

7/30/09
Introduction

• **Critical** point search
 – Beam energies 7.7-39 (Starting next year)
 – Lower beam energies after low-E electron cooling (≥ 2014)

• **Luminous** beams with stochastic cooling
 – Stochastic cooling ramp-up 2010-2014 (mostly by 2012)

• **Charming** physics with vertex upgrades
 – PHENIX: 2011
 – STAR: prototypes beginning 2011, full installation 2013

Key Physics Questions:

What are the landmarks on the QCD phase diagram?
What is the mechanism for QCD energy loss?
What are the quantitative properties of the QCD matter produced at RHIC?
RHIC: A flexible accelerator

- Flexibility is key to understanding complicated systems
 - Polarized protons, $\sqrt{s} = 10-500$ GeV
 - Nuclei from d to Au, $\sqrt{s_{NN}} = 5-200$ GeV
- Physics runs to date
 - Au+Au @ 9.2, 20, 62, 130, 200 GeV
 - Cu+Cu @ 20, 62, 200 GeV
 - Polarized p+p @ 200, 500 GeV
 - d+Au @ 200 GeV
- Future reach
 - Increase A to Uranium
 - Scan in \sqrt{s} to 5 GeV
 - Increase Luminosity x10
Precision ID in a selected range of phase space
STAR: A Correlation Machine

Tracking: TPC

Particle ID: TOF

Electromagnetic Calorimetry: BEMC+EEMC+FMS

\((-1 \leq \eta \leq 4)\)

Heavy Flavor Tracker (2013)

Forward Gem Tracker (2011)

Full azimuthal particle identification over a broad range in pseudorapidity
• 1st order phase transition: bracket location of the Critical Point
 – Hydrodynamics: ν_1, ν_2, azimuthally sensitive HBT for EOS softest point
• Direct signatures of Critical Point via enhanced fluctuations
 – Large-acceptance identified particle fluctuations and correlations
Non-monotonic behavior would indicate a softest point: 1st order
Identified particle fluctuations

- Example: K/π fluctuations
 - Rise in NA49 data not explained by models
- STAR: Full PID, large acceptance uniform over $\sqrt{s_{NN}}$
- Unprecedently accurate and differential measurements possible
Turn-off of QGP Signatures

- Search for onset of signatures of new phenomena discovered at highest RHIC energy
 - Number of constituent quark scaling in v_2: partonic collectivity
 - Hadron suppression: opacity
 - “Ridge”: pair correlations extended in pseudorapidity
 - Local parity violation
Local Parity Violation

- Signature consistent with local parity violation at 200, 62 GeV
 - Measure Parity Even so potential contamination
 - No background found to date that can mimic effect
 - Background (and magnetic field) expected to change with energy
- Program: vary energy, vary species (isobars?) to test behavior

Requirements:
- Large Magnetic Field from initial L
- Chiral symmetry restoration
- Deconfinement

7/30/09
RHIC Heavy Ion Program in the Next Decade
Luminosity progression to the fb\(^{-1}\) era

26 nb\(^{-1}\) * 197 * 197 = 1 fb\(^{-1}\) pp equivalent

Stochastic cooling: order of magnitude increase in luminosity for rare probes
Mechanisms for Energy Loss

• QED: different momenta, different mechanisms
• Just beginning the exploration of this space in QCD

Bremsstrahlung
Radiative dE/dx
\(\gamma \)-Jet: Golden Probe of QCD Energy Loss

- \(\gamma \) emerges unscathed from the medium
 - Probes deeply into the medium: different surface bias from hadron, dihadron
 - Fully reconstructed kinematics: measure real fragmentation function \(D(z) \)
γ-Jet: RHIC is clean

RHIC: Clean separation of γ from π⁰ for \(p_T > \sim 10 \) GeV

Fragmentation contribution also expected to be small

\[\pi^0 \text{ suppression at RHIC & LHC} \]

W. Vogelsang NLO
RHIC II \(\mathcal{L} = 20 \) nb⁻¹
LHC: 1 month run
γ-Hadron Correlations: First Peek

Both STAR and PHENIX have made first measurements in both Au+Au and p+p

\(\gamma \)-Hadron Correlations: need for precision

\(\gamma \) triggers \(8 < E_{\text{trig}}^{\gamma} < 16 \text{ GeV/c} \)

- First measurements made
 - Agree with theory within uncertainties
 - Higher precision needed
- Major progress possible in coming years with RHIC II

\(E_{\text{jet}} = E_{\gamma} \)

Projection for \(E_{\gamma} > 15 \text{ GeV}, 4 < p_{T}^{\text{assoc}} < 6 \text{ GeV} \)

7/30/09

RHIC Heavy Ion Program in the Next Decade
Jet reconstruction: another way to constrain hard kinematics

Positive: large cross-section, so large p_T reach

Negative: large backgrounds, limited E resolution
Jets in Au+Au: Results so Far

Beginning results from 2007 indicative, but in no way final word.

- Beginning application of FastJet... to handle large background.
- Orders of magnitude more luminosity available by Run 14.

- Issue: effective triggers to sample luminosity w/o physics bias.

7/30/09
RHIC Heavy Ion Program in the Next Decade
Quarkonium: Upsilon

Proof of principle: STAR p+p 2006
Upsilon(1S+2S+3S)→e^+e^-

Sequential dissociation of quarkonia to measure energy density of plasma
Both STAR and PHENIX have made first measurements
PHENIX: (1S+2S+3S) \(R_{AA} < 0.64 \) at 90% CL; need to separate states
Quarkonium in the fb\(^{-1}\) era: Upsilon

Proof of principle: STAR p+p 2006
Upsilon(1S+2S+3S)→e^+e^-

Sequential dissociation of quarkonia to measure energy density of plasma
Good start, but needs full luminosity of RHIC II to be definitive
Heavy Quark Motivation: Grey Probes

- Problem: interaction with the medium so strong that information lost: “Black”
- Significant differences between predicted R_{AA}, depending on the probe
- Experimental possibility: recover sensitivity to properties of the medium by varying probe

\[Wicks \text{ et al, Nucl. Phys. A784 (2007) 426} \]
Charm/Beauty: No shade of gray

- Strong suppression and flow of non-photonic electrons
- Study mechanism of energy loss (especially B)
- Study thermalization and transport properties (esp. low p_T D)
Measurement: a wealth of decay

- 4 pages D^0, 10 pages of B^+ decay modes in PDB
- Most promising modes:
 - Leptons: B.R. $\sim 10\%$ per lepton species of B and D
 - Electrons: triggerable in calorimeters
 - Muons: no Bremsstrahlung, photonic background
 - Neither have full kinematic reconstruction
 - Pure hadronic: full kinematics
 - $D \rightarrow K\pi$, $D^* \rightarrow K\pi\pi$
 - Not easily triggerable
 - $B \rightarrow J/\Psi + \chi$
 - Clean from D contamination
 - B.R. $\sim 1\%$, triggerable
Outlook: Precision Vertexing

Entering prime years for heavy flavor with precision vertexing
Complementary capabilities and systems

ALICE: LHC, where c becomes a “light” quark

PHENIX: Focus on electrons and muons

STAR: Focus on fully reconstructed kinematics
Separating Charm from Beauty

ALICE Projections

\[\tilde{q} = 4 (\text{dot-dash}), 25 (\text{dash}), 100 (\text{solid}) \text{ GeV}^2/\text{fm} \]

- No E loss
- E loss, \(m_c = m_b = 0 \)
- E loss, \(m_c = 1.2 \text{ GeV}, m_b = 4.8 \text{ GeV} \)

PHENIX Projection

Expected with VTX (0.4/nb)

- \(c+b \to e \)
- \(b \to e \)
- \(c \to e \)

- At ALICE, c a “light quark”, \(e_B/e_C \) sensitive to B energy loss
- PHENIX VTX: built to isolate \(e_B \) from \(e_D \)
- Clean measurements of beauty quenching will be possible
Open Charm with the STAR HFT

• Direct reconstruction with full kinematic information
• Only possible for charm:
 – D^+, D^0, Λ_c
• No ambiguities
Conclusion

Key Physics Questions:
What are the landmarks on the QCD phase diagram?
What is the mechanism for QCD energy loss?
What are the quantitative properties of the QCD matter produced at RHIC?

RHIC is well-positioned to provide answers to these questions over the next decade with
Critical point search
Luminous beams (Jets, γ-jet, Quarkonia)
Charming and beautiful suppression and flow
Quarkonia: High Pt J/ψ

Test mechanism of J/ψ production

J/ψ only hadron with $R_{AA} = 1$?

Start of high precision with Run 10 – expect $\sim 2\, \text{nb}^{-1}$

Precision measurements later in the decade after full stochastic cooling