Top Quark Physics

Mousumi Datta
Fermi National Accelerator Laboratory for the CDF and DØ Collaborations

2009 Meeting of the Division of Particles and Fields of the American Physical Society
July 29, 2009
Outline

- Introduction
- Exploring top properties
 - Top quark production
 - Top quark mass
 - Other top properties
 - Forward backward asymmetry, tWb coupling, spin correlation
 - Search for beyond the Standard Model (SM) physics
- Summary and prospects
Top Quark Physics

- Existence required by the SM
 - Spin 1/2 fermion, charge +2/3, weak-isospin partner of the bottom quark
- Discovered in 1995 at Tevatron
- Mass surprisingly large $\Rightarrow \sim 40\times$ heavier than the bottom quark
 - Only SM fermion with mass at the EW scale
- Top decays before hadronization: $\Gamma \sim 1.4$ GeV $\gg \Lambda_{\text{QCD}}$
 - Provide an unique opportunity to study a "bare" quark
- Currently only produced at Tevatron
Why Study Top Properties?

Try to address some of the questions:

- Why is top so heavy?
- Is top related to the EWSB mechanism?
 - Seesaw theory of EWSB ((PRD 59, 075003 (1999); PRD 65, 055006 (2002)))
- Is it the SM top?
- Search for beyond SM physics: Does top decay into new particles? Couple via new interactions?

Pair production
- Cross section
- $t\bar{t}$ resonance search
- Forward-backward asymmetry
- Production mechanism
- Spin-correlations, FCNC,

EW-single top
- Cross section
- Anomalous coupling
- W' search, ...

Decay
- W helicity
- Anomalous couplings
- Charged Higgs

Characteristics
- Mass
- Life-time, Charge, Spin....
Accelerators

Tevatron Run II
Proton-antiproton collider (2001-2011)
$\sqrt{s} = 1.96$ TeV
$\sigma_{tt} = \sim 6.7$ pb at $m_{top} = 175$ GeV/c2
$\sigma_{\text{single top}} = \sim 2.9$ pb at $m_{top} = 175$ GeV/c2
Experiments: CDF, DØ

Large Hadron Collider (LHC)
Proton-proton collider (2009-)
$\sqrt{s} = 10-14$ TeV
$\sigma_{tt} = \sim 833$ pb at $m_{top} = 175$ GeV/c2
$\sigma_{\text{single top}} = \sim 315$ pb at $m_{top} = 175$ GeV/c2
Experiments: ATLAS, CMS
Tevatron Run II Performance

- Doubled data set each year for four years
- Peak Luminosity record 3.18×10^{32} cm$^{-2}$-sec
- Total integrated luminosity delivered ~ 6.7 fb$^{-1}$
- ~ 6 fb$^{-1}$ recorded per experiment
The CDF and DØ Detectors

- Silicon tracking
- Large radius drift chamber (r=1.4m)
- 1.4 T solenoid
- Projective calorimetry (|\(\eta\)| < 3.5)
- Muon chambers (|\(\eta\)| < 1.0)
- Particle identification
- Silicon Vertex Trigger

- Silicon tracking
- Outer fiber tracker (r=0.5m)
- 2.0 T solenoid
- Hermetic calorimetry (|\(\eta\)| < 4)
- Muon chambers (|\(\eta\)| < 2.0)
- New trigger and more silicon in Summer 2006 (Run2b)

All crucial for top physics!

July 29, 2009

M. Datta, FNAL
Top Quark Production

- At hadron colliders
 - Predominantly pair produced via strong interaction
 - Electro-weak single top production

Tevatron: $\sigma_{s\text{-channel}}=0.9$ pb, $\sigma_{t\text{-channel}}=2.0$ pb
(for $m_{\text{top}}=175$ GeV/c²)

Tevatron ~85% ~15%
Top Quark Production (Cont’)

One top pair per 10 billion inelastic collisions at Tevatron
Top Quark Decay

- In the SM: $\text{Br}(t \rightarrow Wb) \sim 100\%$
- Decay channels classified by W decays
- Top pair decay channels ($l=e, \mu$)
 - Dilepton: $lvlvbb$
 - Lepton+jets: $lvqqbb$
 - All-hadronic: $qqqqbb$
- Single top decay channels
 - s-channel: $tb \rightarrow Wbb \rightarrow lvbb$
 - t-channel: $tq(b) \rightarrow Wbq(b) \rightarrow lvbq(b)$
 (overwhelming background prevents using hadronic W decays for single top)
Experimental Challenges

b-tagging

Jet Energy Scale

- And more: background and signal modeling, background estimation, etc.
Signal-to-Background Ratio (S/B)

- b-tagging provides significant background suppression
- Dilepton: Manageable S/B even without b-tagging
- Lepton+Jets: Good S/B after b-tagging
 - Remaining dominant background from W+jets
- All-hadronic: Huge QCD background
 - S/B ~1/1000 at trigger level
 - Needs additional effort for background suppression
 - Neural network (NN) based event selection has been used

<table>
<thead>
<tr>
<th>S/B at Tevatron</th>
<th>Dilepton (≥4 jets)</th>
<th>Lepton+Jets (≥4 jets)</th>
<th>All-hadronic (After NN Selection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 b-tag</td>
<td>1:1</td>
<td>~1:4</td>
<td>~1:20</td>
</tr>
<tr>
<td>1 b-tag</td>
<td></td>
<td>4:1</td>
<td>1:5</td>
</tr>
<tr>
<td>2 b-tags</td>
<td>20:1</td>
<td>20:1</td>
<td>1:2</td>
</tr>
</tbody>
</table>

Most top properties analyses use relatively clean event sample
Top Physics at Tevatron

Robust program of top quark measurements

- Many measurements in all the different channels → **consistency**
- Different methods of extraction with different sensitivity → **confidence**
- Combine all channels and all methods → **precision**
Top Quark Production

Top pair production cross section
Single top production cross section
Top Pair Production Cross-Section

- Tests QCD in very high Q^2 regime.
- Compare measured cross sections among various $t\bar{t}$ final states
 - Anomalies in the $t\bar{t}$ rate would indicate the presence of non-QCD production channels: for example resonant state $X \rightarrow t\bar{t}$
- Provides important sample composition for all other top property measurements.
Measure using b-tagged (≥ 1 b-tags) and pre-tag (≥ 0 b-tags) events

$$\sigma_{tt}(\text{b-tagged}) = 7.2 \pm 0.4 \text{(stat)} \pm 0.5 \text{(syst)} \pm 0.4 \text{(lumi)} \text{ pb}$$

$$\sigma_{tt} \text{ (pre-tag) } = 7.1 \pm 0.4 \text{(stat)} \pm 0.4 \text{(syst)} \pm 0.4 \text{(lumi)} \text{ pb}$$

$$\Delta \sigma / \sigma = \sim 10 \% \text{. Dominated by uncertainty on luminosity}$$
Reduce luminosity systematic by normalizing with respect to Z cross section

\[\sigma_{\bar{t}t} / \sigma_Z \]

\[\sigma_{\bar{t}t} = R \sigma_{z \to \ell \ell}^{\text{theory}}, \quad R = \frac{\sigma_{\bar{t}t}}{\sigma_z} \]

\[\sigma_{z \to \ell \ell}^{\text{theory}} = 251.3 \pm 5.0 \quad \text{pb} \]

\[\sigma_{\bar{t}t} \text{ (pre-tag)} = 7.0^{+0.4}_{-0.4} \text{ (stat)}^{+0.4}_{-0.4} \text{ (syst)} \pm 0.4 \text{ (lumi)} \text{ pb} \]

\[\sigma_Z = 253.3 \pm 1.0 \text{ (stat)}^{+4.4}_{-4.6} \text{ (syst)}^{+16.6}_{-13.7} \text{ (lumi)} \text{ pb} \]

\[\frac{1}{R} = 36.5^{+2.1}_{-2.3} \text{ (stat)}^{+1.9}_{-2.0} \text{ (syst)} \]

\[\sigma_{\bar{t}t} \text{ (pre-tag)} = 6.9 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 0.1 \text{ (theory)} \text{ pb}, \quad \Delta \sigma_{\bar{t}t} / \sigma_{\bar{t}t} = \sim 8\% \]

\[\sigma_{\bar{t}t} \text{ (b-tagged)} = 7.0 \pm 0.4 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.1 \text{ (theory)} \]
All-Hadronic Channels

Measurement performed using the signal yields derived from a previous top quark mass measurement

\[\sigma_{tt} = 7.2 \pm 0.5 \text{(stat)} \pm 1.4 \text{(syst)} \pm 0.4 \text{ (lumi)} \text{ pb} \]

for \(M_{\text{top}} = 172.5 \text{ GeV/c}^2 \)
ttbar Cross Section Results

- Consistent among channels, methods and experiments
- Limited by systematic uncertainties
- Uncertainties comparable to the theoretical uncertainty

July 29, 2009 M. Datta, FNAL
ttbar + jet Cross Section

- Test of pQCD
- Use events in lepton+jets channel with ≥1 b tag and ≥3 jets
- Break up ttbar sample into 2 samples 0j and +j
- Simultaneously measure cross sections for both samples

\[\sigma_{t\bar{t}+j} = 1.6 \pm 0.2_{\text{stat}} \pm 0.5_{\text{syst}} \text{ pb} \]
\[\sigma_{t\bar{t}+j}^{\text{theory}} = 1.79^{+0.16}_{-0.31} \]

\[\sigma_{t\bar{t}+0j} = 5.5 \pm 0.4_{\text{stat}} \pm 0.7_{\text{syst}} \text{ pb} \]

July 29, 2009

M. Datta, FNAL
Physics of EW Single Top Production

- The SM predictions (PRD70, 114012 (2004))
 - $\sigma_{s\text{-channel}} = 0.88 \pm 0.11 \text{ pb}$
 - $\sigma_{t\text{-channel}} = 1.98 \pm 0.25 \text{ pb}$
 (for $m_{\text{top}} = 175 \text{ GeV/c}^2$)

- Direct measurement of V_{tb}: (S. Willenbrock, Rev. Mod. Phys. 72, 1141-1148)
 \[\sigma_{\text{single top}} \propto |V_{tb}|^2 \]

- Produced $\sim 100\%$ polarized top, can be used to test the V-A structure of the top EW interaction. (G. Mahlon, hep-ph/9811219)

- Sensitive to beyond SM physics
 - $t\text{-channel}$: 4th family, FCNC
 - $s\text{-channel}$: W', H^+
Experimental Challenge

- **Experimental signatures:**
 - One high P_T isolated e or μ
 - Large missing transverse energy
 - ≥ 2 jets (≥ 1 b-tag)
- Suffers from large amount of W+jets backgrounds

July 29, 2009
M. Datta, FNAL
Extracting Single Top Signal

- No single variable provides significant signal-background separation
- Perform multivariate analysis ⇒ take advantage of small signal background separation in many variables
Single Top Measurements

CDF Preliminary Single Top Summary
For $M_{top} = 175$ GeV/c2

- S-Channel Likelihood Function (3.2 fb$^{-1}$) 1.5 ± 0.9 pb
- Neural Network (3.2 fb$^{-1}$) 1.8 ± 0.6
- Matrix Element (3.2 fb$^{-1}$) 2.5 ± 0.7
- Likelihood Function (3.2 fb$^{-1}$) 1.6 ± 0.8
- Boosted Decision Tree (3.2 fb$^{-1}$) 2.1 ± 0.7
- Combination (Lepton+Jets) (3.2 fb$^{-1}$) 2.1 ± 0.6
- MET+Jets (2.1 fb$^{-1}$) 4.9 ± 2.6
- Combination (All Channels) (3.2 fb$^{-1}$) 2.3 ± 0.6

Single Top Production Cross Section (pb)

DØ 2.3 fb$^{-1}$

- Decision Trees 3.74 ± 0.95 pb
- Bayesian NNs 4.70 ± 1.18 pb
- Matrix Elements 4.30 ± 0.99 pb
- BLUE Combination 4.16 ± 0.84 pb
- BNN Combination 3.94 ± 0.88 pb

$\sigma (p\bar{p} \rightarrow tb+X, tqb+X)$ [pb]

March 2009

N. Kidonakis, PRD 74, 014012 (2006) $m_{top} = 170$ GeV
Observation of Single Top Production

- CDF and D0 both report >5σ observation Mar-2009
- V_{tb} measurement
 - CDF: $|V_{tb}| = 0.91 \pm 0.11$ (exp.) ± 0.07 (theory), $|V_{tb}| > 0.71$ at 95% CL
 - D0: $|V_{tb}^{fl_1}| = 1.07 \pm 0.12$, $|V_{tb}| > 0.78$ at 95% CL

July 29, 2009

M. Datta, FNAL
Top Mass
Why measure the Top Quark Mass?

- Related to standard model observables and parameters through loop diagrams
- Consistency checks of SM parameters
- Precision measurements of the M_{top} (and M_W) allow prediction of the M_{Higgs}
- Constraint on Higgs mass can point to physics beyond the standard model

$\Delta M_W \propto M_{\text{top}}^2 \quad \Delta M_W \propto \ln M_H$

July 29, 2009

M. Datta, FNAL
Uncertainty on JES ⇒ About 3% systematic uncertainty on Top mass measurement when convoluted with ttbar p_T spectrum
In-situ Measurement of JES

- Additionally, we use $W \rightarrow jj$ mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty.

Measurement of JES scales directly with statistics!
Top Mass : Lepton+Jets Channel

- Use event-by-event likelihood based on leading order \(t\bar{t} \) cross section.

 - **Most precise top mass measurements from single channels**

 \[m_{\text{top}} \text{ with 3.6 fb}^{-1} \text{ D0 data:} \]
 \[
 173.7 \pm 1.3 \text{ (stat+JES)} \pm 1.4 \text{ (syst)} \text{ GeV/c}^2
 \]

 \[m_{\text{top}} \text{ with 3.2 fb}^{-1} \text{ CDF data:} \]
 \[
 172.1 \pm 1.2 \text{ (stat+JES)} \pm 1.1 \text{ (syst)} \text{ GeV/c}^2
 \]
Combine Run I measurements with most recent Run II measurements
Take into account the statistical and systematic uncertainties and their correlations (NIM A270 (1988) 110, NIM A500 (2003) 391)
Combined top mass

\[173.1 \pm 1.3 \text{ GeV}/c^2 \]

\[\chi^2/\text{ndof} = 6.3/10 \Rightarrow 79\% \text{ prob} \]
- Good agreement among all input measurements

Top mass known with relative precision of 0.75%
Uncertainties on Measured Top Mass

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔM_t (GeV/c²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet energy scale:</td>
<td>0.73</td>
</tr>
<tr>
<td>t-tbar modeling:</td>
<td>0.71</td>
</tr>
<tr>
<td>background:</td>
<td>0.26</td>
</tr>
<tr>
<td>lepton energy scale:</td>
<td>0.11</td>
</tr>
<tr>
<td>miscellaneous:</td>
<td>0.18</td>
</tr>
<tr>
<td>Systematic:</td>
<td>1.07</td>
</tr>
<tr>
<td>Statistical:</td>
<td>0.65</td>
</tr>
</tbody>
</table>

- Uncertainty dominated by sources which should continue scale with the statistics of the sample
- With full Run II data set could reach a total uncertainty of $\Delta M_t \sim 1$ GeV/c²
Direct Measurement of the Mass Difference Between Top and Anti-top

- Test of CPT invariance
- Use lepton+Jets events and matrix element method
- $M_{\text{top}} - M_{\text{anti-top}} = 3.8 \pm 3.7 \text{ GeV/c}^2$
- Relative mass difference (2.2±2.2)%
- The first measurement of a mass difference of bare quarks.
Other Top Properties
Forward Backward Asymmetry (A_{fb}) in Top Pair Production

- Asymmetry caused by interference of ME amplitudes for same final state
- The SM prediction:
 - In $tt\bar{t}$ frame: $A_{fb}^{tt\bar{t}} = 0.05 \pm 0.015$ (QCD at NLO)
- Can be significantly enhanced in different BSM models:
Forward Backward Asymmetry (A_{fb}) in Top Pair Production

- A_{fb} measured in the ttbar rest frame

$$A_{\bar{t}t}^{fb} = \frac{N(\Delta Y > 0) - N(\Delta Y < 0)}{N(\Delta Y > 0) + N(\Delta Y < 0)}$$

$$\Delta Y = -Q_\ell \cdot (Y_{t,\text{leptonic}} - Y_{t,\text{hadronic}})$$

- CDF apply unfolding to go from reconstructed to parton level

$$A_{fb} = 0.193 \pm 0.065 \text{ (stat)} \pm 0.024 \text{ (syst)}$$

SM Prediction: $A_{fb} = 0.05 \pm 0.015$

- DØ: no unfolding and acceptance correction: $A_{fb} = (12 \pm 8 \pm 1) \%$ (PRL 100, 142002 (2008))
 - Set limits on Z' production
A_{fb} Dependence on the Invariant Mass of ttbar

- Scan for A_{fb} above and below 8 different M_{tt} thresholds
- Sensitive to new physics effect

Parton Level A_{FB}

- Below M_{tt} Edge
 - CDF II Preliminary L=3.2 fb^{-1}
 - A_{FB} ± σ_{stat}
 - ± σ_{syst}
 - Integral A_{FB} = 19.3% with flat mass dependence
 - NLO Model

- Above M_{tt} Edge
 - CDF II Preliminary L=3.2 fb^{-1}
 - A_{FB} ± σ_{stat}
 - ± σ_{syst}
 - Integral A_{FB} = 19.3% with flat mass dependence
 - NLO Model

July 29, 2009
M. Datta, FNAL
The SM top decays via EW interaction: $\text{Br}(t \rightarrow bW) \sim 100\%$
- Top decays as a bare quark \Rightarrow spin info transferred to final states

V-A coupling in the SM \Rightarrow
- longitudinal fraction $f_0 \sim 70\%$
- left-handed fraction $f_- \sim 30\%$
- right-handed fraction $f_+ \sim 0\%$

The SM prediction modified in various new physics models

Can use $\cos \theta^*$ to measure f_0, f_+, f_-.
- $\cos \theta^*$: Angle between lepton and b in W rest frame.
W-boson Helicity Fractions

- Measure f_0 and f_+ simultaneously \Rightarrow model independent
- D0 Lepton+jet and Dilepton 2.7 fb$^{-1}$

 $f_0 = 0.49 \pm 0.11$ (stat) ± 0.09 (syst)

 $f_+ = 0.11 \pm 0.06$ (stat) ± 0.05 (syst)

- CDF Lepton+Jets 2 fb$^{-1}$

 $f_0 = 0.62 \pm 0.10$ (stat) ± 0.05 (syst)

 $f_+ = -0.04 \pm 0.04$ (stat) ± 0.03 (syst)

Consistent with the Standard Model
Generic Wtb Coupling

- Constrain form factors for anomalous tWb coupling
 - Combine information from single top production and W helicity measurement from ttbar decay

\[L_{tWb} = \frac{g}{\sqrt{2}} W^-\bar{b} \gamma^\mu \left(f^L_1 P_L + f^R_1 P_R \right) t - \frac{g}{\sqrt{2} M_W} \partial_\nu W^-\bar{b} \sigma^{\mu\nu} \left(f^L_2 P_L + f^R_2 P_R \right) t \]

- Standard Model \(f^L_1 = 1, \quad f^L_2 = f^R_1 = f^R_2 = 0 \)

\[|f^R_1|^2 < 0.72 \]

for \(|f^L_1|^2 = 1 \)

\[|f^L_2|^2 < 0.19 \text{ @ } 95\% \text{ CL} \]

\[|f^R_2|^2 < 0.20 \]

Consistent with Standard Model

July 29, 2009

M. Datta, FNAL
ttbar Spin Correlations

- Use off-diagonal basis: \(\tan \xi \equiv \sqrt{1-\beta^2} \tan \theta^* \). In ttbar frame: \(\beta \equiv \text{top velocity} \) and \(\theta^* \equiv \text{top flight direction w.r.t. proton direction} \).
- Templates: angular distribution of (cos \(\theta_+ \), cos \(\theta_- \)) and (cos \(\theta_b \), cos \(\theta_{\bar{b}} \)).
- **CDF Results**
 - \(-0.455 < \kappa < 0.865\) (68\% C.L.) or \(\kappa = 0.320^{+0.545}_{-0.775} \) for \(M_t = 175 \text{ GeV/c}^2 \)
 - The SM predicts \(\kappa \sim 0.8 \).

July 29, 2009
ttbar Spin Correlations (Cont’)

- D0 measures decay products (l⁺,l⁻) angular correlation coefficient C

\[
\frac{1}{\sigma} \frac{d\sigma}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 - C \cos \theta_1 \cos \theta_2)
\]

- θ₁ (θ₂): angle between the flight direction of l⁺ (l⁻) and direction of flight of one of the colliding hadrons in the ttbar rest frame

- D0 result:

\[
C = -0.17^{+0.64}_{-0.53} \text{ (stat + syst)}
\]

<table>
<thead>
<tr>
<th>coefficient</th>
<th>LO</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.928</td>
<td>0.777</td>
</tr>
</tbody>
</table>
Search for Beyond the Standard Model Physics
Resonant ttbar Production

- Search for resonant ttbar production from the decays of massive Z-like bosons
- Set upper limits on Leptophobic Z’ boson with mass $M_{Z'}$
- Lepton+Jets channel: $M_{Z'} > 820 \text{ GeV/c}^2$ at 95% CL
- All-hadronic channel: $M_{Z'} > 805 \text{ GeV/c}^2$ at 95% CL
More Top Physics Results From Tevatron

Apologies for my many omissions.

For a full listing of results go to:

http://www-cdf.fnal.gov/physics/new/top/top.html

http://www-d0.fnal.gov/Run2Physics/WWW/results/top.htm
Summary and Outlook

- Top quark properties are currently being studied at Tevatron
 - ttbar cross-section and top mass measurements
 - Most measurements are systematically limited
 - Mass measured to 0.8% precision
 - First observation of single top
 - Study other properties of top quark, search for new physics
 - Almost all the measurements are limited by statistics at present
 - Increasing data from Tevatron will further help reveal the true nature of top quark ⇒ Expect ~10 fb⁻¹ by 2011
- LHC will open up a new era of Top physics ⇒ Top factory
 - Understanding of systematic uncertainties would become crucial
 - Top is a standard candle, tool for calibrating JES, b-tagging
- Tevatron’s top physics program and understanding of systematic effects will continue to play a significant role for years to come