An RTAG View of Event Collections,
and Early Implementations

David Malon
ATLAS Database Group

LHC Persistence Workshop
5 June 2002



Event Collection Types

m Implicit (by containment):
— “whatever events are in this file, or in this sequence of
files”

m EXxplicit:
— “this specific list of events”

— may consist of selected events from this file, a few
from that file, ...

m Project should support both kinds of collections

m RTAG also proposed that explicit collections be
queryable (like tag databases)



Implicit collections

m Assumption: Implicit collections are created
implicitly--simply writing a sequence of events
results in an event collection

m Providing the file or (file list) as input should
suffice to support iteration

m Collection may be named and cataloged, but this
IS an additional, optional, step

m Input event iterator interface should be the
same as for explicit collections



Explicit collections

m Equivalent to a list of “pointers” to events
m Because the project will deliver externalizable Refs

encapsulating possibly technology-specific persistent
addresses, RTAG proposal is an implementation that
uses these Refs

Explicit collections behave like a variable-length list of
Refs to experiment-specific event entry points

Collections are created explicitly, either by experiment’s
framework or by user: Ref to event entry point is
inserted into a collection

Natural starting point for an input interface, then, is
something like an STL input iterator

Is this a reasonable common input interface for both
explicit and implicit collections?



Queryable collections

In an explicit collection, optional “tag” data may also be
associated with an event

m Ref + tag data are inserted into an explicit collection

m Mental model is of a relational table whose columns are

the tag attributes, with one column containing a Ref to
the event

Propose to implement explicit collections both in the
ROQOT layer and in the relational layer

Resulting collection would allow preselection of events of
interest, but could also be used directly for analysis

An architectural view is that tags are data exported from
the event (event-level metadata)



Tag specification interface

m Tag definition requires provision of a list of
property names and types

m Many projects and technologies have proposed
interfaces (generic tags, addItem methods for
ntuples, SQL CREATE TABLE syntax, XML, ...)

m Specific choice is perhaps not so important, but
interface should be the same for event tags,
collection metadata, file metadata, ...

m Propose to support types in the approximate
intersection of MySQL types and ROOT types



Query interface

m Should not invent a new query language

= Propose a strict, very limited subset of SQL-xx,
likely to be supportable in most technologies
— Predicates applied to single tags

— Predicates are boolean combinations of range queries
on attributes

— Comparison operators (<, >, =, =, ...) applied to
single attribute (column) names—no arithmetic

— Logical operators (AND, OR, NOT), and grouping ()




Collection services for the common
project

m Early project implementation of collections
allows us to support a user view of input/output
specification at a level “higher” than files, even
when our implementation is file-based

m Relational implementations allow the project to
do early prototyping of facilities that make
nontrivial use of relational capabilities:
querying, indexing, server-side selection, ...



A sample scenario

m A production job produces an explicit (tag)
collection, instantiated in a ROOT file

m N production jobs produce N such files

m A concatenation step produces an explicit union
of these tag tables to create a SINGLE relational
table, which is indexed to support fast SQL
predicate-based selection



m Co
m Su
m Co

Collection-level operations

lection creation, naming, registration
pset selection (satisfying SQL predicate)

DYing

— E.g., from one technology to another
m Unions—declarative, and explicit concatenation

m ...other collection operations and services as
required in later releases



Optional potential extensions

Most physics processing is “for each:” “for each event
that satisfies my condition, do ...”

— Order is unimportant, as long as all qualifying events are
processed

A U.S. Grand Challenge Project in support of the STAR
experiment delivered order-optimized iteration
Simplified view:
— sort events that satisfy your condition into groups according to
the file(s) they are in
— deliver first the groups of events whose files are already cached
— initiate prefetching of files for events whose data are not already
in the cache (remote? On tape?)
Step one should be “easy” if we can map Refs to file ids;
the rest can come later (...or not...)



Volunteering...

m Argonne/ATLAS is prepared to volunteer...

— to deliver initial implementations of event collections and
collection services in a reasonable timeframe (this summer?)

— to ensure that deliverables meet reasonable requirements of the
four experiments

— to do prototyping/benchmarking of relational capabilities
(indexing, ...)

— to partner with others with similar interests

m It is clear that many others have done related work
(LHCb, BaBar, ROOT team, IT/DB, DESY, ...); we are
interested partly because the work is valuable to us--
ATLAS has not done tag database prototyping to date



