

LCG meeting

CERN- 5 June

René Brun

ftp://root.cern.ch/root/longrefs.ppt

Normal Streaming mode

Only one copy
of each object
in the graph
saved to buffer

TBuffer b;
A.Streamer(b)

Normal Streaming mode

References using C++ pointers

Normal Streaming mode

References using TRef pointers

Program Writing

```
TFile f("example.root","new");
TH1F h("h","My histogram",100,-3,3);
h.FillRandom("gaus",5000);
h.Write();
```

Program Reading

```
TFile f("example.root");
TH1F *h = (TH1F*)f.Get("h"):
h->Draw();
f.Map();
```



```
20010831/171903 At:64
                                           TFile
                               N = 90
20010831/171941 At:154
                               N = 453
                                           TH1F
                                                          CX = 2.09
20010831/171946 At:607
                               N = 2364
                                           StreamerInfo
                                                          CX = 3.25
20010831/171946 At:2971
                               N = 96
                                           KeysList
20010831/171946 At:3067
                               N = 56
                                           FreeSegments
20010831/171946 At:3123
                               N=1
                                           END
```


Memory <--> Tree The Tree entry serial number

Persistent Object References in ROOT

Tree Friends

Collaboration-wide public read

Processing time independent of the number of friends unlike table joins in RDBMS

```
Root > TFile f1("tree1.root");

Root > tree.AddFriend("tree2", "tree2.root")

Root > tree.AddFriend("tree3", "tree3.root");

Root > tree.Draw("x:a", "k<c");

Root > tree.Draw("x:tree2.x", "sqrt(p)<b");
```


Chains of Trees

- Designed as light weight entities
- Assume large number of TRefs per event
- Very fast dereferencing (direct access tables)
- Cannot (not designed for) find an object in a file

TLongRef, TLongID classes proposed for references with load on demand

- TRef is perfect for referencing objects like hits, clusters, tracks that may be > 10000.
- You would not like to have the size of a TRef bigger than the size of its referenced object!
- A TRef occupies in average 2.5 bytes in the file
- There is no point in providing load on demand for one single hit, cluster or track.

TRef example: Event.h

```
class Event : public TObject {
private:
                  fType[20];
                                       //event type
   char
   char
                 *fEventName:
                                       //run+event number in character format
                                       //Number of tracks
   int
                  fNtrack:
   int
                  fNseq:
                                       //Number of track segments
   int
                  fNvertex;
   int
                  fMeasures[10];
   float
                  fMatrix[4][4];
                                       //[fNvertex]
   float
                 *fClosestDistance:
   EventHeader
                  fEvtHdr:
   TClonesArray *fTracks;
                                       //->array with all tracks
                                       //array of High Pt tracks only
   TRefArray
                 *fHighPt;
                                       //array of Muon tracks only
   TRefArray
                 *fMuons;
                                       //reference pointer to last track
   TRef
                  fLastTrack:
   TRef
                  fWebHistogram;
                                       //EXEC:GetWebHistogram
   TH1F
                                       //->
                 *fH;
                                                                       Can also do
                                                                     load on demand
public:
   TH1F
                *GetHistogram() const {return fH;}
                *GetWebHistogram (Bool t reload=kFALSE)
   TH1F
                   return (TH1F*)fWebHistogram.GetObject(reload);}
```


Load on demand

- It makes sense for objects like
 - large collections of hits, clusters, tracks
 - files
 - mag field
 - geometry
- Assuming that an event will contain < 100 such objects to be requested on demand, there is no problem in having fat references (eg 50 bytes)

TLongRef, TLongID

Object Identification

- An object referenced by a TLongRef must inherit from class TLongID
- When a TLongID is created, it is added to one single table (map) of LongIDs
- When a TLongID is written to a file, its persistent components are written to the file.
- When a TLongID is read, it is added to the map of LongIDs.

- A TLongRef points to an object inheriting from TLongID.
- TLongRef attributes are identical to TLongID. In addition it includes a pointer to the object.
- When a TLongRef is written, its TLongID components are written.
- When a TLongRef is dereferenced, its pointer is computed (if not already there) by searching in the map of TLongIDs.

TLongID

```
Up to 128 bits
        TUUID u
root [0]
root [1] u.AsString()
(const char* 0x40476a80) "c62ad97a-78c9-11d6-9e58-4ed58a89beef"
class TLongID {
                           TUUID unique in time (nanoseconds)
                                      and space
        fUUID;⁴
TUUID
TString fText1;
TString fText2;
                           Additional info to be discussed
etc...
                                            TLongID could be
                                            reduced to TUUID
```



```
Class TLongRef {
   TUUID fUUID;

TString fWhere;
   Additional info to be discussed
   FileID
   subdirectory
   branch in Tree, etc
}
```