BaBar -Overview of a running
(hybrid) system

Peter Elmer

Princeton University
S June, 2002

Overview

- BaBar uses Objectivity for the eventstore, conditions,
detector configurations, ambient data and for temporary
storage of information used in calibrations

- BaBar 1s primarily interested in following the LCG
persistency framework area as part of developing and
maintaining an Objectivity contingency plan

- I'll try to describe here the BaBar production and
analysis system and some of the things that shaped it

- I'm not going to discuss the Objectivity based eventstore
in detail. That has been done before and I'm not the right
person for that anyway

- I'm not going to show any class diagrams

Experiment deployment model

- Timescale: 1n production/contingency

+ Volume: 575TB (Objectivity) + 15TB (ROOT) + 100TB
(raw data, "xtc" files)

- Files: 350k (Objectivity), a lot (ROOT), ~20k (xtc/raw)

+ Distribution: 4 “"Tier A", 2 "Tier B", 15-20 simulation
production sites, ~15 " "Tier C"

- Recovery from job failures: yes (method varies)
- Number of population jobs: 20M(?) so far
+ Use of Refs: yes

- (the rest of this talk 1s actually details about our current
““deployment model")

Trigger/Online

- L1 Trigger -hardware

- L3 Trigger -software

1 running on farm of unix processors

1 Solaris/sparc from beginning of data taking, recently
demonstrated running on linux/intel

1 Design output was 100Hz, now surpassed

1 Writes raw data to a custom flat file ("xtc") as a
buffer, this 1s saved to mass storage and is the mput to
Prompt Reconstruction (PR). This 1s the canonical
raw data format for BaBar.

n

Prompt Reconstruction (PR) Farm

Datamower Datamower Datamower Datamower Datamower D atamowe o Datarmower Datarmower
conditions Datarmaver
client || client (]| client || eclient || client || client || client ||client || client || client .en
)))))))))) conditions
client || client (]| client || eclient || client || client || client ||client || client || client o1
client || client (]| client || client || client || client || client ||client || client || client
client ||client || client ||client || client ||client || client ||client || client ||client conditions
client || client (]| client || client || client || client || client ||client || client || client
client || client (]| client || client || client || client || client ||client || client || client
client || client (]| client || client || client || client || client ||client || client || client
client || client (]| client || client || client || client || client ||client || client || client
client || client (]| client || client || client || client || client ||client || client || client
raw
client || client (]| client || client || client || client || client ||client || client || client
client || client (]| client || client || client || client || client ||client || client || client
client || client (]| client || client || client || client || client ||client || client || client raw
-l oprsery
client client || elient client || elient client || client client || client client
cliermt || client (]| cliemt || eclient || client || client || client ||<lient || client || client
cliermt || client (]| cliemt || eclient || client || client || client ||<lient || client || client raw
cliemt || client (]| client || client || client || client || client || <lient || client || client
R d t. v 1 th d th

taken, raw data taken from ""xtc" file (retrieved
from disk cache or from HPSS)

""Rolling" calibrations from one run used by next

Event Data written to Objy in PR

- TAG - tag data, used for analysis (1kB/event)

- AOD - ""micro data", widely used for analysis
(5kB/event)

- ESD - "'mini1 data", used currently mostly for
calibrations, new more complete version going
into production will likely be more interesting for
analysis (may replace AOD, 10kB/event)

- REC -reco data (deprecated, 150kB/event)

- RAW - Objy copy of raw data (may now be
turned off, 50kB/event)

Typical run in PR

Proc: 2002-02-17 000037 - 175 Modes, 748256 Events, O IsPhysics

B:-0010; U: 2.37; D: 7047, E: 8285 min

Run-26949-1-02-03-1623:57 112 - PIO.22hY00fb [Awg Speed 14854, 185.70 evisisec }

2N T

3 - TR BT S AR P P]
20 E E
ol S8 L . s
180 E -f-ﬁ ""f M F ¥ . \L m“‘-lf*ﬁfl \ gy Tﬁlyiﬁllf?l':"“;,-}l%"'-'r-ﬂ__
170 E \5{ L K‘I{
18 F Evant -Processing
150 £ ATT Rodes

T 140 g store

2w calib- data,

£ oE merged by 3

@ o FE [Z g ohe node

s 10 E ~p-deb St-arrEuH arvd actual

B i E and ealibration

o mg Conditions Read is done, 3

3 =]

B o :

& wE 3

0 E - 5
G Run 26949 5

W, 748288 events]
o E +75-866MHz- PTTTcpus E
- z
0o 5
0 E 1
n :I./?_ 1 \l\l I I I : : I I I I 3

o =] = 2 & B]

Tima [mIin]

Sun Mar1701:28:12 X002

G_Grosdldler and F Safal

PR Hardware today

8 datamovers (4 cpu, 450MHz sparc), each with 1
1TB of disk space attached (perhaps overkill)

175 client cpus - 866 MHz PIII cpus, 1 GB
(Linux)

+ 3 lockserver machines - 1 cpu 450MHz sparc
-1 CHS/OID server - 2 cpu 450MHz sparc
-1 catalog server - 2 cpu 450MHz sparc

-1 journal server - 2 cpu 450MHz sparc

2 oprserv machines -2 cpu, 400MHz sparc, 400
GB of disk (2 machines perhaps overkill)

Scaling limitations

- Data servers: limitations can be dealt with by simply
adding more data servers (optimization done with

corba clustering hint server)

 Lockserver limitation: partition farm suc

nodes write to one FDB and the other ha!

h that half of
ftoa

separate FDB and piece the resultant col
together in a “"bridge federation" for use

CPU usage on lock servers:

1001 B opr-evs 1

B opr-evs 2

B0 M cpr-cond
60
40+
20T

0

| | | | |

I 1 I I I I
220 3:30 340 3:80 4:00 4:10
Aprg, 2002

ections back
in analysis

New PR architecture

conditions
transfer

Conditions

calibrafions
only

PromptCalib
Farm

client

client

client

client

client

client

client

client

cliemnt

client

client

client

client

client

client

client

? raw

OprSery

reado nly
oo ndifioms
Processing Processing
Farm 1 Farm 2
CHS CHS
Datamowe Datamowe
lient || client cliert || el
lient || client cliert || el

OpESery

Processing

Farm N
CHS

Datamowe
lient || client
lie nt lie nt
lie it lie it
lient || client
lient || client
lie it lie it
lient lient
liemt || elient
liemt || client
lient || client
liemt || client
lie it lie it
lient || client
lient || client
liemt || client
liemt || client

Two passes

PromptCalib:
process fixed rate
of some event
types, runs
processed 1n the
order taken, write
calibrations only

Bulk reco:
parallel farms for
event reco. (In
limit, 1t 18 batch
processing)

Simulation Production (SP)

- Simpler system: N (independent) batch clients writing
data to one server, conditions are read only. Only the
Objectivity federation ties the output of jobs together.

+ Currently do production 1n 3 separate steps, each a
separate batch job

1 Geant simulation
1 Detector response simulation

1 Reconstruction

- This was useful when the rate of change of the code
base was higher, now moving to single monolithic
executable which does all three "“steps" 1 one job

Simulation Production (2)

+ SP done at 15-20 sites involving something like
700 cpus

- We were shipping all data (analysis data as well
as = bulk" data) back to SLAC, was heading
towards 1 TB/day. We no longer ship the bulk
data databases back to SLAC, but delete 1t instead
locally at the production site. (1.e. it doesn't go out
over the WAN)

 Single pass monolithic executable will go into
production soon, allowing us to avoid also
sending the (intermediate) bulk data over the

LAN

Kanga/Root format

+ Due to mitial difficulties in using Objectivity for both
production and (in particular) analysis away from SLAC, in
1999/2000 an alternative ROOT I/0O based analysis data

format was developed (Kanga)
+ Limited to " "micro data" (TAG and AOD)

- Emphasis on ease of import and use at University sites (to
date Objectivity 1s only used for analysis at SLAC and
In2p3)

- Constructed such that a given analysis job could switch back
and forth between the Objy and ROOT based eventstores
very easily (transient-persistent separation)

Kanga/Root format

A collection of TAG/AOD data 1s stored as a single tree per
file, one file output per job, one job per data/MC run.

- Simple integer based references using a registry
implemented, but not used in TAG/AOD data

+ Data 1s read from Objectivity eventstore and written out in
“"Kanga" format by dedicated converter jobs

- As used 1n production, redoing the tag bits due to new
selections means rewriting all TAG/AOD data

- The system supports both streaming of multiple files as well
as simple pointer collections, but neither of these 1s used (yet)
in production system.

Analysis jobs: notes

- Users queries a collection database in RDBMS (for both
Objectivity and Kanga eventstores) with a standalone
tool and receives a list of collections matching the
specified criteria (skim, release, run number, ...). The
Framework job then runs on the eventstore (Objy or
Kanga) and does not interact with the RDBMS.

+ Analysis data resides on servers which are physically
separate from those from production, so data becomes
available in a weekly sweep, requiring an outage of both
the production and analysis federations.

Production reskimming

- Approximately once/year since data taking began, the
physics selections are revisited (new ones added, existing
selections are changed, etc.)

- This seems to happen asynchronously from our
“production releases" for use in PR and SP

- When these selections converge, they are put into
production but existing real and simulated data must be
reskimmed, 1.e. tag bits are recalculated and physics
selection collections are redone

- In Objectivity eventstore, TAG 1s rewritten and the rest

of the event 1s borrowed from original copy. In Kanga,
TAG/AOD 1s rewritten.

Streaming strategy

-+ Inmitially 4 data streams were output from PR
(1isMultihadron, 1sCalibEvent, ...). This was mostly
useful for staging, but was not well matched to export
of small data samples.

+ In early 2001, switched to writing 20 output streams
(with event duplication between them), such that a
site could import a single " “stream" as a data subset.
“"Solved" problem of useful deep copy due to DBID
limitation of Objectivity.

. This strategy was to bootstrap use of Objectivity for
analysis at “"Tier C" (1.e. University) sites

Streaming Strategy (2)

-~ Problems with 20 stream strategy:

1 duplication at sites with all streams on disk requires a
factor 2.5 more disk space,

1 a stream" contained several physics selections, more
than a small site really wanted (100+ selections are
grouped into the 20 streams to minimize duplication
between streams)

1 Increased significantly the number of open files in PR and
thus impacted performance

-~ Due to large size of disk resident data in Objectivity
eventstore, we never actually turned on the event duplication
between streams (wrote 20 streams with " first hit, owns the
event" placement)

Streaming strategy (3)

- In the past 1.5 years, the technology to use
multiple federations within a single job was put
Into use.

- We are now switching back to a scheme in which
we write 4 streams and 100+ skim (pointer)
collections for physics selections. Data can be
exported by running a deep copy job over one of
the physics selections and writing the output to a
separate federation.

-~ Not yet 100% clear 1f data duplication 1s needed
anyway for performance reasons or not....

Analysis use

- I've described the production systems which produce
terabytes of analysis level data for use 1n analysis and
some analysis related activities.

- What does the average physicist doing analysis do once
the data 1s available 1n one of the two (relatively
sophisticated) eventstores?

- He/she immediately runs over it and dumps the data out
to ntuples/root files in his/her own custom format (and
asks for terabytes of disks to store it)

- To some extent this has crystallized into " "ntuple
productions"” by each analysis working group

- Work on standalone ntuples/root files interactively and
then pass through data a second time creating reduced

Analysis use (2)

- We provide standardized classes for persisting
““composite" candidates (e.g. a reconstructed B meson 1n
an analysis program) as well as " attributes"” for user
defined information 1n both the Objectivity and
Kanga/ROOT eventstores.

+ Not widely used, people use ntuples and custom root
files, but interest seems to be increasing a bit.

- Min1 (ESD) date 1s significantly more sophisticated and
may replace some of this as analyses are becoming more
sophisticated

Objectivity contingency plan

- As a first pass, we are interested in exploring 1f
we could extend our existing "Kanga" ROOT
based persistency framework as a contingency
plan for our eventstore, rather than importing
something new lock, stock and barrel.

- However, as this project becomes more mature, it
will clearly become more interesting as the
“contingency plan”

Currently we have no plan to migrate away from
Objectivity.

General 1ssues for Kanga extension

A Well adapted to tag/micro analyses, but not everything
we would need from a RDBMS/ROQOT replacement for
Objectivity eventstore, some considerations are:

A All components 1n one file (no tag, aod, esd, raw, sim,
tru separation). no esd, raw, sim, tru...

A No means to borrow components from an event
A File size 1s poor match to HPSS (too small)

A No automatic staging mechanism

A Production pointer collections (in progress)

A How do we 1nsure that every event is written once and
only once in PR? (checkpointing/transactions)

