

2. WP9 - Earth Observation Applications

- 1. Welcome and introduction (15m)
- 2. WP9 Earth Observation Applications (50m)
- 3. ESA and WP9: infrastr, appl, TB 0/1 (50m)
- 4. Demonstration of EO applications (45m)
- 5. ESA and WP9: scale up, effort, recovery plan (50m)
- 6. Side ESA actions related to GRID (30m)
- 7. Reviewer separate meeting (60m)
- 8. Conclusions (30m)

ESA DataGrid Review Frascati, 10 June 2002

Summary item 2

- WP9 Earth Observation Applications (50m)
 - DataGrid EO requirement (LF, 15m)
 - DataGrid WP9 tasks, WP9 Plan (JL, 15m)

Earth Observation Community GRID interactive scenario

e Ground Station Coverage

EO and Network Computing data models: EO is more than "parallel task execution"!!

- Distributed Computing
 - Integration of data from various instruments and missions
- High-Throughput Computing
 - Interferometry ...
- On-Demand Computing
 - Generation of EO user products...
- Data-Intensive Computing
 - Archive data re-processing, climate modeling...
- Collaborative Computing
 - Scientists application interactions, Instrument cal/val ...

Ian Foster and Carl Kesselman, editors, "The Grid: Blueprint for a New Computing Infrastructure," Morgan Kaufmann, 1999

The Grid from a Services View

Number crunching: interferometry subsidence, DEM generation

Pomona (Cal): subsidence velocity fields 40 ERS1/2 images (92-99), Ambiguity: 28 mm

GRID requirements:

- large data files (10+ GB)
- stages with intensive processing
- science driven value adding

Charter for Disaster Management

- Provide a single access point to space systems to emergency & rescue organisations in case of disasters
- Participating Space
 Agencies: CNES, CSA,
 ESA, ISRO, NOAA, ...
- Missions: RADARSAT;
 ERS, (Envisat); SPQT;

IRS; NOAA, ...

ESA DataGrid Review – 10 June 2002 – n° 7

ESA EO facilities real-time infrastructure

technologies

GRID

Envisat science community

Why GRID in EO? (1)

- EO Community: Progressive refinement of data from many data sources to produce higher quality products
 - Product generation chain involving distributed organisations and users
 - Collaborative: distributed users and data large international cooperation
 - Discovery: large numbers of products & resources
 - Interoperability of catalogue and metadata already in operation
 - Web based data services

Why GRID in EO? (2)

- Massive, non-stop data volumes
 - New instruments, sensors & product types
 - Distributed archives
 - Historical dataset reprocessing
- Complex numerical processing algorithms
- Near real-time turnover

- Resource-independent and application-independent services (middleware)
 - authentication, authorization, resource location, resource allocation, remote data access,
 - accounting, security, quality of services, fault detection, real time services, ...
- Specialized protocols, procedures, data standards, operational environments, interfaces to EO legacy systems...
- EO dedicated portal and user access...

OZONE: a case of Global Environmental Monitoring

GOME analysis detected ozone thinning over Europe 31 Jan 2002

GRID requirements:

- · Multi instrument data fusion
- Distributed data sources, science and institutional users
- Complex data processing (1d

data = 20 d processing

Near real time deliv.

Application of DataGrid in EO

- Focus on One EO application (Ozone) but explore:
 - Collaborative environment, parallel data processing, ...
 - Interface to legacy and COTS systems
 - Develop generic components
 - Re-use components to add new applications
 - Integrate compatible technologies
 - Integrate other data types (new envisat instruments)
- Testing in "controlled" GRID environment (ESRIN-ENEA) and in "wide-European" environment
- Feedback to DataGrid developers and Architecture Group

