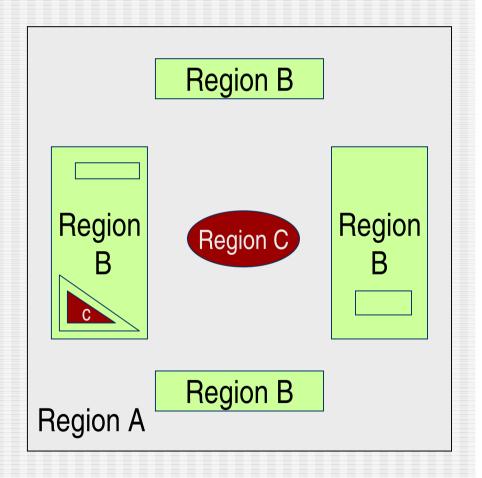
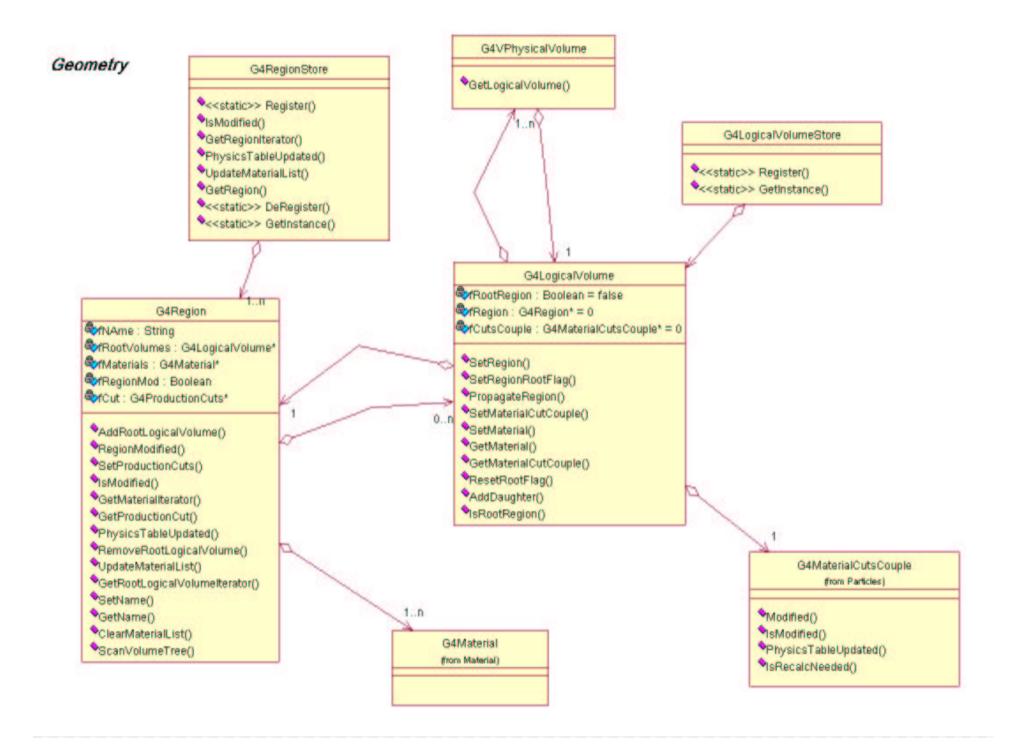
Geant4 release 5.1 summary

Gabriele Cosmo EP/SFT

Release contents

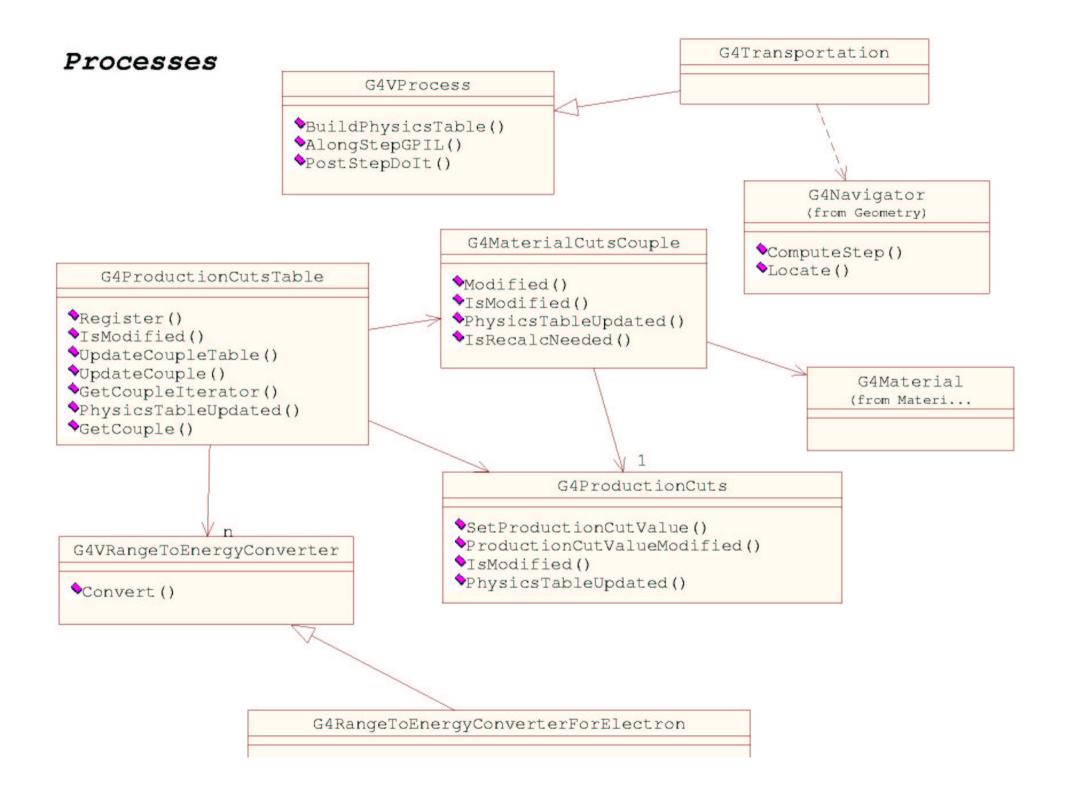
- Introduction of region as concept for defining production cuts
 - First introduced in beta release of February
 - Modified strategy for handling cuts by physics processes
 - Reviewed initialization mechanism of physics tables
 - Backward-compatibility with previous release and defined migration path for future releases
- Bug fixes


- Cut = production threshold
 - Distance below which no secondary particles are produced (internally converted to energy for each used material)
 - NOT tracking cut
- Geant4 was originally designed to allow a unique cut in range
 - Unique cut in range for each particle
 - The default is the same cut for all particles
 - Allows consistency of simulated physics
 - Guaranties that a volume with high cuts (I.e. with poor physics quality) will not "pollute" the simulation of a neighboring volume with low cuts
- Requirements from ATLAS, BABAR, CMS, LHCb, ... to allow several cuts
 - Globally or per particle


- Motivations for having several cuts
 - A unique cut may be source of run-time performance penalties
 - Detector's parts with lower cuts fix the cut for the whole simulation
 - A cut can be far too low than necessary in some detector's parts
 - A cut is typically required at the level of a detector subsystem

- Introduce the concept of G4Region
 - Large geometrical area, typically the root logical volume of a subsystem
 - Can also be a group of root logical volumes (e.g. barrel + end-caps of the calorimeter)
 - A cut in range G4ProductionCut is associated to a region. A default one is defined
 - Eventually, a range cut per particle is allowed
 - One or more root logical volumes can be added to a region

A region can have several root volumes


The world is in a predefined default region

Physics processes & cuts

- Only processes dealing with cuts are affected
- Main issue is to know which cross-section table to use in the current volume at tracking time
- In the old scheme, for a given process, there was a one-to-one relation between a material and a cross-section table:
 - This was used to retrieve the physics table using:
 - « index of material » == « index of physics table »
- Now, since the same material may appear in several regions above relation is replaced by:
 - « index of {material, region} couple » == « index of physics table »

Some features and known limitations

- *G4Region* implemented for use in cuts
 - But could be of more general usage in future
- Above mechanism requires a partition of the logical volumes
 - A same logical volume cannot belong to two different regions
 - Understood as being a (very) weak limitation in practice
- The propagation of the region's attributes is triggered at initialization time and whenever a change to the detectordescription setup is applied
- G4ProductionCut defines a set of cuts for all particles
 - The same cut value appears for, say e-, in two different cut objects and same materials appear in the related regions
 - the relevant cross-section table entries will be calculated twice
 - Cross-section tables will be built only for used materials

More features ...

- The calculation of the cross-section tables takes place <u>after</u> the <u>BeamOn</u> command is issued.
 - The initialization of the run-manager is noticeably faster
 - On the other hand, more time is required to get the first event loop starting
- Production thresholds are now adopted only for gammas, electrons and positrons
 - Other particles do not use the concept of production threshold

Items for migration of the user code to release 5.1 - 1

- User applications having user-defined production cuts will work with no required transition to the new interface, as long as regions are not used
- The new interface for setting production cuts will be required for using the 'cuts-by-region' feature (see the guides)
- The old interface for setting/controlling production cuts (methods and UI commands) will be made obsolete in the next public release and later-on removed
- The file format of storing physics tables has been changed. Thus all the stored physics tables must be rebuilt

Items for migration of the user code to release 5.1 - 2

- Advanced applications making use of a subclassed run-manager will have to migrate to the new initialization scheme and interface defined in G4RunManager
 - Similarly for user-defined physics processes
- Particularly, users must be aware of the change in the sequence of building the physics tables
 - G4RunManager::BuildPhysicsTable() must be invoked from G4RunManager::RunInitialization()
 - G4VUserPhysicsList::SetCuts() does not trigger the construction of the physics tables, it simply sets the production thresholds (cuts)

What next?

- Release 5.2, end of June
 - Consolidation release
 - Performance optimisation
 - Some minor developments
 - Bug fixes, code cleanup
- Release 6.0, December
 - New features
 - See:

http://cern.ch/geant4/source/planned_features.html