
POOL Based CMS Framework

Bill Tanenbaum

US-CMS/Fermilab
04/June/2003

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 2

CMS Framework Status

• ROOT/IO now used for persistency

• Dependent on ROOT technology

• Problems for large scale production
– No concurrency (must use “winter” mode)

– No file catalog (must keep track of files
manually)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 3

POOL Based Framework

• Use POOL file catalog on top

• Replace ROOT/IO with POOL storage
manager for event data (ROOT/IO based,
TTrees optional)

• For metadata, as above, or (future) use
(RDBMS based) POOL collection manager,
or RDBMS based storage manager

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 4

POOL Advantages w.r.t. ROOT

• File Catalog provided

• Object cache manager provided

• Dictionary generation (SEAL) easier
– simple XML specification files

– lcgdict simpler and more robust than rootcint
• Does only what is needed for data dictionary

• simple output – no compilation failures seen yet!

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 5

POOL Advantages w.r.t. ROOT

• Technology independent interfaces

• Modular Architecture
– Components can be used independently

– Storage Manager has layered architecture (e. g. ATLAS
and LHCb will each use its own object cache manager)

• Class headers need no changes
– No instrumentation (e. g. ClassDef)

– No inheritance from base object (e. g. TObject)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 6

POOL Advantages (cont.)

• Persistent Reference (pool::Ref<T>) can
locate object in persistent store
– POOL keeps track of file and container

• Can use ROOT trees or ROOT keyed
objects
– POOL handles details of ROOT trees

– Simple to switch (one parameter)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 7

POOL Advantages (cont.)

• Provides alternatives to ROOT/IO for
metadata (providing atomic transactions,
concurrency, and other RDBMS goodies)
– RDBMS based collection manager

– RDBMS based storage manager (future)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 8

• Replacing ROOT with POOL Storage manager
in COBRA/ORCA (plus adding File catalog)

• All data (including metadata) will still use
ROOT storage manager (avoids redesign of
metadata at this stage).

• Most time and effort will be debugging and
testing.

First Stage of Conversion

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 9

• One developer nearly full time

• 3 more weeks coding (2 weeks coding done)

• Debugging and testing is unpredictable.

• Optimistically, debugging/testing begins late
June, robust product in July.

• Could easily be August, though.

First Stage Effort (est.)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 10

Current POOL/SEAL Status

• Relevant Features recently released
– More STL support (e.g. map)

– Transient members of persistent objects

– Polymorphic access through pool::Ref<T>

– Class name not needed to place object

– Polymorphic access through C++ pointers

– Dictionary Generation improvements

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 11

POOL/SEAL Status (cont.)

• POOL 1_1_0 (30 June, prerelease 11 Jun)
– Update capability (needed for metadata)

– Containers as “Implicit Collections”

– More STL support (multimap)

– Implicit Ref<T> interconversions

– etc.

– Summary: All we know we want at this point

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 12

POOL/SEAL Status (cont)

• Dictionaries generated (lcgdict) for all
COBRA/ORCA persistent classes!

• All dictionaries compile!

• Conversion of SEAL dictionaries to CINT
dictionaries by POOL, and run-time use,
still untested for COBRA and ORCA
classes

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 13

POOL concerns

• Performance
– Storage Manager puts multiple software layers

on top of ROOT

– Good news: For production (writeAllDigis),
ROOT takes only about 6% of the time, and
most of that is data compression for writing.
Still, performance is a concern.

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 14

POOL concerns (cont.)

• Immaturity of POOL
– Pool is very young and unproven

• Growing pains certain

• But POOL team responds very quickly to requests

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 15

POOL Impact on Applications

• Very similar to ROOT!
– A data dictionary must be generated for any

persistence capable user-defined class.

– A data dictionary must be generated for any user
defined class used as a template parameter for a
persistence capable class.

– Therefore, the application and POOL cannot be totally
decoupled.

– Never any source code coupling for classes. Unlike in
ROOT, all classes are “ foreign” .

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 16

Future stages of conversion

• Internal cleanup/simplification of COBRA
to eliminate vestiges of Objectivity
– joint project with Vincenzo

– as much as possible concurrent with stage one

– data format must be stable soon

• Conversion of MetaData to RDBMS
– Optional: only if driven by external need

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 17

Summary

• Straightforward conversion from ROOT/IO
to POOL Storage Manager using ROOT

• Many advantages to POOL

• Major concern is POOL’s immaturity

• But: POOL progressing rapidly

• Performance is another concern

