POOL Based CMS Framework

Bill Tanenbaum
US-CM SFermilab
04/June/2003



CMS Framework Status

e ROOT/IO now used for persistency
* Dependent on ROOT technology

* Problemsfor large scale production
— No concurrency (must use “winter” mode)

— No file catalog (must keep track of files
manually)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab



POOL Based Framework

e Use POOL file catalog on top

* Replace ROOT/IO with POOL storage
manager for event data (ROOT/10O based,
TTreesoptional)

* For metadata, as above, or (future) use
(RDBM S based) POOL collection manager,
or RDBM S based storage manager

04/June/2003 Bill Tanenbaum US-CMS/Fermilab



POOL Advantagesw.r.t. ROOT

* File Catalog provided
* Object cache manager provided
* Dictionary generation (SEAL) easier
— simple XML specification files
— lcgdict ssmpler and more robust than rootcint

* Does only what is needed for data dictionary
» simple output —no compilation failures seen yet!

04/June/2003 Bill Tanenbaum US-CMS/Fermilab



POOL Advantagesw.r.t. ROOT

* Technology independent interfaces

e Modular Architecture

— Components can be used independently

— Storage Manager has layered architecture (e. g. ATLAS
and LHCDb will each use its own object cache manager)

 Class headers need no changes
— No instrumentation (e. g. ClassDef)
— No inheritance from base object (e. g. TObject)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 5



POOL Advantages (cont.)

* Persistent Reference (pool::Ref<T>) can
locate object in persistent store

— POOL keeps track of file and container
e Can use ROQOT trees or ROOT keyed
objects
— POOL handles details of ROOT trees
— Simple to switch (one parameter)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab



POOL Advantages (cont.)

* Provides alternativesto ROOT/IO for
metadata (providing atomic transactions,
concurrency, and other RDBM S goodies)

— RDBM S based collection manager
— RDBM S based storage manager (future)

04/June/2003 Bill Tanenbaum US-CMS/Fermilab



First Stage of Conversion

* Replacing ROOT with POOL Storage manager
In COBRA/ORCA (plus adding File catalog)

All data (including metadata) will still use
ROOT storage manager (avoids redesign of
metadata at this stage).

Most time and effort will be debugging and
testing.

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 8



First Stage Effort (est.)

e One developer nearly full time
e 3 more weeks coding (2 weeks coding done)
* Debugging and testing Is unpredictable.

o Optimistically, debugging/testing begins late
June, robust product in July.

e Could easlly be August, though.

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 9



Current POOL/SEAL Status

 Relevant Featuresrecently released
— More STL support (e.g. map)
— Transient members of persistent objects
— Polymorphic access through pool::Ref<T>
— Class name not needed to place object
— Polymorphic access through C++ pointers
— Dictionary Generation improvements

04/June/2003 Bill Tanenbaum US-CMS/Fermilab

10



POOL/SEAL Status (cont.)

« POOL 1 1 0(30June, prerelease 11 Jun)
— Update capability (needed for metadata)
— Containers as “Implicit Collections’
— More STL support (multimap)
— Implicit Ref<T> interconversions
— elC.
— Summary: All we know we want at this point

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 11



POOL/SEAL Status (cont)

 Dictionaries generated (Icgdict) for all
COBRA/ORCA persistent classes!
 All dictionaries compile!

e Conversion of SEAL dictionariesto CINT
dictionaries by POOL, and run-time use,
still untested for COBRA and ORCA

classes

04/June/2003 Bill Tanenbaum US-CMS/Fermilab

12



POOL concerns

e Performance

— Storage Manager puts multiple software layers
on top of ROOT

— Good news. For production (writeAllDigis),
ROOT takes only about 6% of the time, and
most of that Is data compression for writing.
Still, performanceisaconcern.

04/June/2003 Bill Tanenbaum US-CMS/Fermilab

13



POOL concerns (cont.)

e Immaturity of POOL

— Pool isvery young and unproven
« Growing pains certain
« But POOL team responds very quickly to requests

04/June/2003 Bill Tanenbaum US-CMS/Fermilab

14



POOL Impact on Applications

 Very similar to ROOT!

— A datadictionary must be generated for any
persistence capabl e user-defined class.

— A datadictionary must be generated for any user
defined class used as atemplate parameter for a
persistence capable class.

— Therefore, the application and POOL cannot be totally
decoupled.

— Never any source code coupling for classes. Unlikein
ROOT, all classes are “foreign”.

04/June/2003 Bill Tanenbaum US-CMS/Fermilab

15



Futur e stages of conversion

 Internal cleanup/simplification of COBRA
to eliminate vestiges of Objectivity

— Jjoint project with Vincenzo
— as much as possible concurrent with stage one
— data format must be stable soon

 Conversion of MetaDatato RDBMS
— Optional: only if driven by external need

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 16



Summary

o Straightforward conversion from ROOT/1O
to POOL Storage Manager using ROOT

 Many advantages to POOL

 Maor concernis POOL’s immaturity
e But: POOL progressing rapidly

* Performance is another concern

04/June/2003 Bill Tanenbaum US-CMS/Fermilab 17



