The Statistical Properties of Large Scale Structure

Alexander Szalay

Department of Physics and Astronomy
The Johns Hopkins University

Outline

• Lecture 1:

- Basic cosmological background
- Growth of fluctuations
- Parameters and observables

• Lecture 2:

- Statistical concepts and definitions
- Practical approaches
- Statistical estimators

• Lecture 3:

- Applications to the SDSS
- Angular correlations
- Real-space power spectrum

Lecture #1

- Cosmological background the big picture
 - The expanding Universe
 - The small fluctuations
 - The Parameters of the Universe
 - Observables
 - Large-scale surveys

The Expansion

- The Universe started in a hot Big Bang
- It is expanding, it is extremely uniform
- It is filled with black-body radiation
- The expansion is described by a small number of parameters
- There are small ripples on top of the smooth background, leading to the observed large-scale structure (LSS) in the Universe

The Microwave Background

- Uniform black-body radiation, detected by Penzias and Wilson
- Temperature T₀=2.728 K today
- Earlier:

$$T = T_0(1+z)$$

Ripples at 10⁻⁵

The Einstein Equations

The expansion equation, and the equation of state:

$$\left(\frac{a}{a}\right)^2 = \frac{4\pi G\rho}{3} - K\frac{c^2}{a^2}$$

$$\left(\frac{a}{a}\right) = -\frac{4\pi G}{3}[\rho + 3P]$$

- Curvature depends on the density
- Today:

$$\frac{a}{a} = H_0 \qquad a(t_0) = 1$$

The Critical Density

Density is expressed in terms of critical density:

$$\Omega = (\rho / \rho_{crit})$$

$$\rho_{crit} = \frac{3H_0^2}{8\pi G}$$

 The density has different components, which differ in their equation of state:

- Matter (dark matter, baryons)
$$P = 0$$

- Radiation
$$P = \rho/3$$

- Cosmological constant (dark energy) $P = -w\rho$

The Expansion vs Ω

$$\left(\frac{a}{a}\right)^{2} = H(t)^{2} = H_{0}^{2} \left[\frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{r}}{a^{4}} + \Omega_{\Lambda} + \frac{\Omega_{\kappa}}{a^{2}}\right]$$

$$\Omega_{\kappa} = 1 - \Omega_{m} - \Omega_{\Lambda} - \Omega_{r} = -K$$

DensityExpansionCurvaturehighclosedpositivelowopennegativecriticalparaboliczero

The Fluctuations

The Universe has small ripples, originating shortly after from the Big Bang. The gravitational potential is modified these small fluctuations.

P(k): fluctuation spectrum

Shape of the Power Spectrum

- Tied to the Big Bang
 - Early horizon size is much smaller than any relevant scale today
 - Must be scale invariant => power law: $P(k)=A k^n$
- What is the exponent?
 - Poisson's equation $\nabla^2 \chi = 4\pi G \rho \delta$
 - The power spectrum of the potential fluctuations is

$$P_{\chi}(k) \propto \frac{1}{k^4} P(k) = Ak^{n-4}$$

The variance per logarithmic interval is

$$k^3 P_{\chi}(k) = A k^{n-1}$$

 The n=1 spectrum is "double scale-invariant" (Harrison-Zeldovich)

The Growth of Fluctuations

- Jeans (1902): gravitational instability in a P=0 fluid
- When the pressure is large, sound waves
- At around recombination:
 - Phase interference => modulation of fluctuations
 - Behaves like a resonant cavity

Transfer Function

- Subsequent evolution changes the power spectrum
 - Linear growth:
 - The same for each wave number, self-similar
 - Transfer phenomena: T(k)
 - Different for different wavenumbers, but modes independent
 - Includes damping, suppressed growth

$$P(k) = Ak^n T(k)^2 D(t)^2$$

- Non-linear growth
 - Nonlinear interactions, mode-mode coupling
 - Happening mostly on small scales
 - Difficult to describe analytically

Evolution of Fluctuations

- Components:
 - Dark energy, dark matter, baryons, photons, neutrinos
- At z>1300 strong coupling between baryons and photons

$$\ddot{\delta}_B + 2\left(\frac{\dot{a}}{a}\right)\dot{\delta}_B = (4\pi G\rho\Omega_B - k^2c_s^2)\delta_B + 4\pi G\rho\Omega_m\delta_m$$

$$\ddot{\delta}_{m} + 2\left(\frac{\dot{a}}{a}\right)\dot{\delta}_{m} = 4\pi G\rho(\Omega_{B}\delta_{B} + \Omega_{m}\delta_{m})$$

- Several effects present:
 - "Friction": the expansion rate of the universe, depends on the effective equation of state of the whole universe
 - "Speed of sound": the back reaction of pressure gradients, depends on the equation of state of the baryons

Changing Equations of State

• Sharp changes in the equations of state:

$$\rho_m(t_{eq}) = \rho_r(t_{eq})$$

$$k_{eq} = \frac{2\pi}{\lambda_{eq}}$$

$$c_s^2 = \frac{c^2}{3} \to 0 \quad \text{at } t_{rec}$$

- All happens between z=1300 and z=1000
- Radiation drag acting on the baryons until z=200

The Effect of Sound Waves

- The remnants of early sound waves show up as small bumps in the LSS P(k)
- They fully affect the CMB
- Wavelength given by the sound horizon (Sakharov)
- Amplitude of LSS bumps depends on

$$f_{B} = \Omega_{B} / \Omega_{tot}$$

W. Hu (1992)

Non-linear Growth

Relevant Scales

Distances measured in Mpc [megaparsec]

1 Mpc = $3 \times 10^{24} \text{ cm}$

5 Mpc = distance between galaxies

3000 Mpc = scale of the Universe

if $\lambda > 200$ Mpc

fluctuations have a PRIMORDIAL shape

if λ <100 Mpc

gravity creates sharp features, like walls, filaments and voids

Biasing

conversion of mass into light is nonlinear light is much more clumpy than the mass

Parameters of the Universe

H_0	Hubble constant	71 km/s/Mpc
Ω_0°	density parameter	0.95-1.05
t_0	age of the Universe	13-14 Gyr
Ω_{k}	curvature	0 ±0.05
Ω_{m}	density of matter	0.35 ± 0.05
Ω_{Λ}	cosmological constant	0.65 ± 0.05
$\Omega_{B}^{T}/\Omega_{m}$	baryon fraction	0.17 ±0.05
$\Omega_{_{\mathrm{V}}}$	density of neutrinos	?

After WMAP

Observables

We can measure:

- Fluxes luminosity distance
- Angles and distances angular diameter distance
- Galaxy velocities the density of matter
- Galaxy 2D positions the shape of the fluctuations
- Galaxy 3D positions anisotropies in the fluctuations

Angular Diameter Distance

The light travels along geodesics:

"Angular diameter distance"

$$d_A = r\theta = \frac{r}{1+z} \frac{\sin n |\Omega_{\kappa}|^{1/2} r}{|\Omega_{\kappa}|^{1/2} r}$$

$$\sin n = \begin{cases} \sin & if \quad K > 0 \\ \sinh & if \quad K < 0 \end{cases}$$

$$r = \int_{0}^{z} dz' \left[(1+z')^{2} (1+\Omega_{m}z') - z'(2+z') \Omega_{\Lambda} \right]^{-1/2}$$

Luminosity Distance

• The Euclidian distance based on its observed flux

$$f = \frac{L}{4\pi d_L^2}$$

Related to the angular diameter distance

$$d_L = (1+z)^2 d_A$$

The Shape of the Fluctuations

Overall spectral index (n)

Amplitude (σ_8)

Matter-radiation equality ($\Omega_{\rm m}h$)

Remnants of sound waves (f_B)

Neutrino mass (Ω_{v})

Separation of light from the mass (b)

Redshift distortion ($\beta = \Omega_{\rm m}^{0.6}/b$)

Dark Energy (Ω_{Λ})

Nonlinear effects

(tilt)

(up-down shift)

(left-right shift)

(bumps)

(damping)

(biasing)

(radial anisotropy)

(xverse anisotropy)

(high-k tail)

The Basic Data Sets

- Redshifts of supernovae standard candles
- Ripples in the Microwave background yardsticks
- Galaxy clustering cosmological parameter fitting
- Galaxy photometry careful sample selection, evolution

Distant Supernovae

- The maximum luminosity of supernovae is constant
- If spotted in time => distance
- Brightness/Redshift: Hubble diagram
- Deviations from Hubble's law: curvature

Hubble-diagram

SN 1997ff

Fitting a Redshift to the SN

We present photometric observations of an apparent Type Ia supernova (SN Ia) at a redshift of ~1.7, the farthest SN observed to date.

exertion by the UCT of the UDE

Cosmological Constant

- The redshift and brightness of the supernova suggested a nonzero cosmological constant!
- The Universe will expand forever

CMB Maps

• 1990 COBE 1000

• 2000 Boomerang 10,000

• 2002 CBI 50,000

• 2003 WMAP 1 Million

2008 Planck 10 Million

Cosmic Microwave Background

- Snapshot of the surface of last scattering
- Physical size of ripples given by sound horizon
- Angular size measured from harmonic analysis
 - => Angular diameter distance gives curvature

Clustering of Galaxies

Measure the spectrum of the density fluctuations today, even on very large scales

Angular Surveys

• 1970 Lick 1M

• 1990 APM 2M

• 2005 SDSS 200M

• 2008 LSST 2000M

Local Redshift Surveys

• 1986 CfA 3500

• 1996 LCRS 23000

• 2003 2dF 250000

• 2005 SDSS 800000

Area and Size of Redshift Surveys

Status Today

- Large samples, selected on rest-frame criteria
- Power spectrum measured longward of the peak
- Global shape of power spectrum fully understood
- Advanced analysis techniques working as planned
- Degeneracies almost orthogonal to CMB
- Excellent agreement between CMB, LSS and SN

Near Future

- Challenges:
 - Baryon bumps, cosmological constant, equation of state
- Cosmological constant is a special case of a more general possibility: DARK ENERGY
- Equation of state: $P = w\rho$
- Cosmological constant: w = -1
- New data around the corner:
 - Very large redshift samples (SDSS-LRG)
 - Very large supernova samples (SNAP)
 - Very large CMB maps (MAP, PLANCK)
- Combined analysis

Combining Methods

- Eisenstein and Hu (1992)
- Different methods have different degeneracies
- Combinations at the likelihood level yield huge improvements

Summary

- Cosmology became an experimental science, we are performing physical experiments
- Many of the outstanding questions are statistical
- Sky surveys provide huge, uniform data sets
- The geometric properties of the Universe are known
- The primordial fluctuation spectrum is 'shaping up'
- Lots of very hard work is needed to reach precision!
- We still have outstanding challenges

Precision Cosmology

- Over the next three years redshift surveys will
 - Detect the baryon bumps
 - Constrain the dark energy
 - Constrain the neutrino mass
 - Contribute substantially to constraints when combined with CMB
- The end of an era...
- Martin Rees (2001): "soon cosmology will bifurcate"...
 - 'brane' cosmology
 - 'environmental' cosmology