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Outline of Talk

Why look at de Sitter (dS)?
Slow-Roll inflation vs. dS
Linear vs. nonlinear quantum fluctuations

Our approximation: passive quantum gravity
Spacetime fluctuations induced only by
stress-energy quantum fluctuations

Classical metric and matter fluctuations in dS
Gauge fixing procedure
Background slicing conditions
Global constraints on the linear fluctuations

Example of these global constraints: Einstein
static metric and matter backreactions
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Outline of Talk (cont’d)

Quantum issues: QFT in dS

Summary and conclusion
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Slow-Roll vs. de Sitter

Slow-roll:

O

φ+δφ
φV(    )

de Sitter:

φV(    )
O

=

φ+δφ

φ=0
Λκ

We want to study quantum perturbation effects in dS
(which are quadratic) and ultimately compare them to
the linear fluctuations in inflation.

– p.4/15



Passive quantum gravity

In a full quantum theory spacetime will fluctuate of its
own accord.

To the extent that matter fields source gravity, we study
the gravity fluctuations induced only by matter
fluctuations.

One replaces the classical Tab with the quantum
expectation value < Tab > to obtain

Gab + Λ0gab + A(1)Hab +B(2)Hab︸ ︷︷ ︸
Counterterms

= 8πG0 < Tab >

By adjusting G0, Λ0, A, B we renormalize < Tab >.

But first we need to study the classical metric and
matter fluctuations.
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Classical matter, metric fluctuations (dS)

Consider perturbing the field equations of gravity with
scalar matter φ and metric g:

Gab(gab) = κTab(gab, φ)

In deSitter, φ̄ = 0, so the leading order equations are of
the character

Lab(δ2gab) = κQab(δφ)(δφ), where

gab = ḡab + δ2gab

φ = φ̄+ δφ

Here, δ2gab represents the leading order gravitational
perturbation due to the quadratic matter fluctuation
(δφ)(δφ)
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Picking a gauge for the metric

At linear order, a gauge transformation is

δ2g̃ab = δ2gab + £ζ ḡab

One can find ζa such that

∇̄bδ2g̃ab =
1

2
∇̄a[ḡ`mδ2g̃`m −

κ

2
(δφ)2

︸ ︷︷ ︸
δφ=δφ̃

]

Then the trace of the field equations is

ḡab
[
−(∇̄`∇̄` − 2)δ2g̃ab +

ḡab
2

(∇̄`∇̄` + 2)δ2g̃
]

= ḡabQ̃ab
( i.e., no matter dependence ) = 0

⇒ Further set ḡabδ2g̃ab = 0, δ2g̃0i = 0 consistently!
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Solving the perturbation equations

In our gauge we can write the metric perturbation as

δ2g̃ab =


 −

(
1
ḡ00

)
ḡijδ2g̃ij 0

0 δ2g̃ij




Therefore only the δ2g̃ij are independent in this gauge,
but note they are neither traceless nor transverse since

∇̄jδ2g̃ij = −κ
4
∇̄i(δφ)2 6= 0

Solve the field equations for δ2g̃00, we find:

δ2g̃00 =
κ

2(Lg(Lg + 2) + 2)
F [(δφ)(δφ)],

where ∇̄a∇̄aδφ = 0
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Background slicing conditions

We can use compact S3 slices: the covers all of dS with

ds2 = −dt2 + cosh2(t)(dχ2 + sin2(χ)dΩ2
2),

for −∞ < t <∞, 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

Noncompact flat <3 slices: this covers only half of dS

ds2 = −dt2 + et
(
δijdx

idxj
)

Compact spherical slicing: only covers half of dS

ds2 = −(1− r2)dt2 +
1

1− r2
dr2 + r2dΩ2

2

Choosing a compact slicing implies quadratic global
constraints on the linear metric and matter fluctuations.
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Einstein static (Es) global constraint

How does one formally solve the (Es) second order
(backreaction) Hamiltonian constraint

L̂00(δ2gab; δ
2φab) =(2)S00

(
(δgab)

2; (δφab)
2
)

?

First (nonlocally) decompose the perturbations δngab:

δngab = δng
(TT )
ab + B̂abδng(Tr) + ḡabδ

nA︸ ︷︷ ︸
Transverse

+ δngab
(L)

︸ ︷︷ ︸
Longitudinal

Then we have to invert L̂00, which is elliptic and
self-adjoint (because of spatial compactness).

Invertibility condition
=⇒

∫

S3

H︸︷︷︸
L̂00H = 0

(2)S00

√
|ḡ|d3x = 0
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Backreactions in Einstein Static (cont’d)

The situation to linear order: Unstable to linear
homogeneous scalar perturbations. Stable (neutrally) to
inhomogeneous scalar perturbations. Stable to tensor
and vector perturbations on all scales.

What linear modes are needed for the backreactions to
be integrable?

The integrability condition for backreactions is
∫

S3

A[(δg
(TT )
ab )2, (δg(Tr))2]︸ ︷︷ ︸

inhomogeneous

− B[(δA)2]︸ ︷︷ ︸
homogeneous

d3x = 0

For B = 0 there are no nontrivial δgab.

Thus the backreaction equations have no solution
unless we include the destabilizing modes.
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Quantum aspect of dS global constraints

For dS, ∃ similar constraints both classical and
quantum.

At the quantum level in vacuum dS, they impose
SO(4,1) invariance on all linear vacuum graviton states.

Generally, there are no SO(4,1) invariant scalar states
without infrared divergences. But here ok since dS is
closed.

Do we use just SO(4,1) invariant states?
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Summary and Conclusion

About dS generated by some VEV of φ ,we study the
leading order gravitational fluctuations induced by the
quadratic φ fluctuations .

dS generated by VEV of φ means that Λ is not a
hand-picked constant but is determined by the vacuum
energy of φ

We gauge fix the gravitational sector to 1 scalar mode
plus gravitational waves, the matter fluctuations are
gauge invariant at linear order.
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Summary and Conclusion (cont’d)

Within this gauge we solve the classical Hamiltonian
constraint.

To solve the semiclassical Hamiltonian constraint
globally, we choose a background slicing such that
M = S3X<1

This background choice in turn imposes global
constraints on the class of allowable states for the
gravitational radiation and matter fluctuations.

Since the spacetime is closed we have only one unitary
equivalence class of states to worry about and now we
have a ‘preferred‘ SO(4,1) invariant vacuum

What do the semiclassical solutions tell us for VEV’s
taken in these states?

– p.14/15



Acknowledgements

NSERC Canada

I also gratefully acknowledge the generous financial
support of the Eotovos Graduate Course and Workshop
in Physics

– p.15/15


	Outline of Talk 
	Outline of Talk (cont'd)
	 Slow-Roll vs. de Sitter 
	 Passive quantum gravity 
	Classical matter, metric fluctuations (dS)

	Picking a gauge for the metric 
	Solving the perturbation equations
	 Background slicing conditions 
	 Einstein static (Es)
global constraint 
	 Backreactions in Einstein Static (cont'd)

	 Quantum aspect of dS global constraints 
	 Summary and Conclusion
	 Summary and Conclusion (cont'd)
	 Acknowledgements 

