Log Likelihood

$$
L=-\frac{1}{2} x^{T} C^{-1} x-\frac{1}{2} \ln |C|
$$

- Estimate the log likelihood in the KL basis, by rotating into the diagonal eigensystem, and rescaling with the square root of the eigenvalues
- Then $\mathrm{C}=1$ at the fiducial basis
- We recompute C around this point - always close to a unit matrix
- Fisher matrix also simple

Quadratic Estimator

- One can compute the correlation matrix of

$$
C\left(k, k^{\prime}\right)=\left\langle\hat{P}(k) \hat{P}\left(k^{\prime}\right)\right\rangle
$$

- P is averaged over shells, using the rotational invariance
- Used widely for CMB, using the degeneracy of a_{Im} 's
- Computationally simpler
- But: includes $4^{\text {th }}$ order contributions - more affected by nonlinearities
- Parameter estimation is performed using $x_{i}=\hat{P}\left(k_{i}\right)$

$$
L=-\frac{1}{2} x^{T} C^{-1} x-\frac{1}{2} \ln |C|
$$

Parameter Estimation

Distance from Redshift

- Redshift measured from Doppler shift
- Gives distance to zeroth order
- But, galaxies are not at rest in the comoving frame:
- Distortions along the radial directions
- Originally homogeneous isotropic random field, now anisotropic!

Redshift Space Distortions

Three different distortions

- Linear infall (large scales)
- Flattening of the redshift space correlations
- $L=2$ and $L=4$ terms due to infall (Kaiser 86)
- Thermal motion (small scales)
- 'Fingers of God'
- Cuspy exponential $\quad P\left(v_{12}\right) \propto e^{-\left|v_{12}\right| / \sigma}$
- Nonlinear infall (intermediate scales)
- Caustics (Regos and Geller)

Power Spectrum

- Linear infall is coming through the infall induced mock clustering
- Velocities are tied to the density via

$$
\beta=\left(\frac{\dot{D}}{D}\right)\left(\frac{\dot{a}}{a}\right)=\frac{\Omega^{0.6}}{b}
$$

- Using the continuity equation we get

$$
P^{(s)}(k)=P(k)\left(1+\beta \mu^{2}\right)^{2}
$$

- Expanded: we get $P_{2}(\mu)$ and $P_{4}(\mu)$ terms
- Fourier transforming:

$$
\xi(r, \mu)=\sum_{L=0,2,4} a_{L} \xi_{L}(r)
$$

$$
\xi_{L}(r)=\frac{1}{\sqrt{2 \pi^{2}}} \int_{0}^{\infty} d k k^{2} j_{L}(k r) P(k)
$$

Angular Correlations

- Limber's equation

$$
w(\theta)=\int d r_{1} r_{1}^{2} d r_{2} r_{2}^{2} \frac{\phi\left(r_{1}\right)}{F\left(r_{1}\right)} \frac{\phi\left(r_{2}\right)}{F\left(r_{2}\right)} \xi\left(r_{12}\right)
$$

$$
s=\frac{r_{1}+r_{2}}{2}, \quad p=r_{1}-r_{2}
$$

$$
\xi(r)=\left(\frac{r}{r_{0}}\right)^{-\gamma}
$$

$$
r^{2}=s^{2} \theta^{2}+p^{2}=s^{2}\left(\theta^{2}+\frac{p^{2}}{s^{2}}\right)=s^{2}\left(\theta^{2}+y^{2}\right)
$$

$$
w(\theta)=r_{0}^{\gamma} \int d s s^{5-\gamma}\left[\frac{\phi(s)}{F(s)}\right]^{2} \int d y\left(\theta^{2}+y^{2}\right)^{-\gamma / 2}
$$

$$
w(\theta)=r_{0}^{\gamma} \theta^{1-\gamma} \int d s s^{5-\gamma}\left[\frac{\phi(s)}{F(s)}\right]^{2} \int d t\left(1+t^{2}\right)^{-\gamma / 2}=r_{0}^{\gamma} \theta^{1-\gamma} H_{\gamma} A_{w}
$$

Applications

- Angular clustering on small scales
- Large scale clustering in redshift space

The Sloan Digital Sky Survey

Special 2.5m telescope, at Apache Point, NM
3 degree field of view
Zero distortion focal plane
Two surveys in one
Photometric survey in 5 bands detecting 300 million galaxies
Spectroscopic redshift survey
 measuring 1 million distances
Automated data reduction
Over 120 man-years of development (Fermilab + collaboration scientists)
Very high data volume
Expect over 40 TB of raw data About 2 TB processed catalogs Data made available to the public

Current Status of SDSS

- As of this moment:
- About 4500 unique square degrees covered
- 500,000 spectra taken (Gal+QSO+Stars)
- Data Release 1 (Spring 2003)
- About 2200 square degrees
- About 200,000+ unique spectra
- Current LSS Analyses
- 2000-2500 square degrees of photometry
- 140,000 redshifts

w(θ) with Photo-z

T. Budavari, A. Connolly, I. Csabai, I. Szapudi, A. Szalay, S. Dodelson,J. Frieman, R. Scranton, D. Johnston and the SDSS Collaboration

- Sample selection based on rest-frame quantities
- Strictly volume limited samples
- Largest angular correlation study to date
- Very clear detection of
- Luminosity dependence
- Color dependence
- Results consistent with 3D clustering

Photometric Redshifts

- Physical inversion of photometric measurements!

Adaptive template method (Csabai etal 2001, Budavari etal 2001, Csabai etal 2002)

- Covariance of parameters

Distribution of SED Type

The Sample

The Stripes

- 10 stripes over the SDSS area, covering about 2800 square degrees
- About 20% lost due to bad seeing
- Masks: seeing, bright stars

The Masks

- Stripe 11 + masks
- Masks are derived from the database
- bad seeing, bright stars, satellites, etc

The Analysis

- eSpICE : I.Szapudi, S.Colombi and S.Prunet
- Integrated with the database by T. Budavari
- Extremely fast processing:
- 1 stripe with about 1 million galaxies is processed in 3 mins
- Usual figure was 10 min for 10,000 galaxies => 70 days
- Each stripe processed separately for each cut
- 2D angular correlation function computed
- $w(\theta)$: average with rejection of pixels along the scan
- Correlations due to flat field vector
- Unavoidable for drift scan

Angular Correlations I.

- Luminosity dependence: 3 cuts
$-20>M>-21$
$-21>M>-22$
$-22>M>-23$

Angular Correlations II.

- Color Dependence

4 bins by rest-frame SED type

Power-law Fits

- Fitting

$$
w(\theta)=A_{\omega}\left(\theta / 0.1^{o}\right)^{\delta}
$$

Bimodal w(θ)

- No change in slope with L cuts
- Bimodal behavior with color cuts
- Can be explained, if galaxy distribution is bimodal (early vs late)
- Correlation functions different
- Bright end (-20>) luminosity functions similar
- Also seen in spectro sample (Glazebrook and Baldry)
- In this case L cuts do not change the mix
- Correlations similar
- Prediction: change in slope around -18
- Color cuts would change mix
- Changing slope

Redshift distribution

- The distribution of the true redshift (z), given the photoz (s)
- Bayes' theorem

$$
P(z \mid s)=\frac{P(s \mid z) P(z)}{P(s)}
$$

- Given a selection window W(s)

$$
P_{w}(z)=\int d s P(s) W(s) \frac{P(s \mid z) P(z)}{P(s)}
$$

- A convolution with the selection window

$$
P_{w}(z)=P(z) \int d s W(s) P(s \mid z)
$$

Detailed modeling

- Errors depend on S / N
- Final $\mathrm{dn} / \mathrm{dz}$ summed over bins of m_{r}

Inversion to r_{0}

From (dn/dz) + Limber's equation $=>r_{0}$

Redshift-Space KL

Adrian Pope, Takahiko Matsubara, Alex Szalay, Michael Blanton, Daniel Eisenstein, Bhuvnesh Jain and the SDSS Collaboration

- Michael Blanton's LSS sample 9s13:
- SDSS main galaxy sample
$--23<M_{r}<-18.5, m_{r}<17.5$
- 120k galaxy redshifts, $2 k$ degrees 2
- Three "slice-like" regions:
- North Equatorial
- South Equatorial
- North High Latitude

The Data

Pixelization

- Originally: 3 regions
- North equator: 5174 cells, 1100 modes
- North off equator: 3755 cells, 750 modes
- South: 3563 cells, 1300 modes
- Likelihoods calculated separately, then combined
- Most recently: 15K cells, 3500 modes
- Efficiency
- sphere radius $=6 \mathrm{Mpc} / \mathrm{h}$
- $150 \mathrm{Mpc} / \mathrm{h}<d<485 \mathrm{Mpc} / \mathrm{h}(80 \%)$: 95k
- Removing fragmented patches: 70k
- Keep only cells with filling factor >74\%: 50k

Redshift Space Distortions

- Expand correlation function

$$
\begin{aligned}
& \xi^{(s)}\left(r_{1}, r_{2}\right)=\sum_{L} C_{n L} \xi_{L}^{(n)}(r) \\
& \xi_{L}^{(n)}(r)=\frac{1}{\sqrt{2 \pi^{2}}} \int_{0}^{\infty} d k k^{2-n} j_{L}(k r) P(k)
\end{aligned}
$$

- $\mathrm{c}_{\mathrm{nL}}=\Sigma_{\mathrm{k}} \mathrm{f}_{k}$ (geometry) β^{k}
- $\beta=\Omega^{0.6 / b}$ redshift distortion
- b is the bias
- Closed form for complicated anisotropy => computationally fast

Shape

$\Omega_{\mathrm{m}} \mathrm{h}=0.25 \pm 0.04$
$f_{b}=0.26 \pm 0.06$

Both depend on b
$\beta=0.40 \pm 0.08$
$\sigma_{8}=0.98 \pm 0.03$

Parameter Estimates

- Values and STATISTICAL errors:

$$
\begin{aligned}
& \Omega h=0.25 \pm 0.05 \\
& \Omega_{b} / \Omega_{m}=0.26 \pm 0.06 \\
& \beta=0.40 \pm 0.05 \\
& \sigma_{8}=0.98 \pm 0.03
\end{aligned}
$$

- 1σ error bars overlap with 2 dF

$$
\begin{array}{ll}
\Omega h & =0.20 \pm 0.03 \\
\Omega_{b} / \Omega_{m} & =0.15 \pm 0.07
\end{array}
$$

Degeneracy:

$$
\begin{aligned}
& \Omega \mathrm{h}=0.19 \\
& \Omega_{\mathrm{b}} / \Omega_{\mathrm{m}}=0.17
\end{aligned}
$$

also within 1σ
With $\mathrm{h}=0.7$

$$
\Omega_{\mathrm{m}}=0.27
$$

$$
b=1.13
$$

$$
\sigma_{8 m}=0.86
$$

Shape of $P(k)$

Technical Challenges

- Large linear algebra systems
- KL basis: eigensystem of 15k x 15k matrix
- Likelihood: inversions of $5 k \times 5 k$ matrix
- Hardware / Software
- 64 bit Intel Itanium processors (4)
- 28 GB main memory
- Intel accelerated, multi-threaded LAPACK
- Optimizations
- Integrals: lookup tables, symmetries, 1D numerical
- Minimization techniques for likelihoods

Systematic Errors

- Main uncertainty:
- Effects of zero points, flat field vectors result in large scale, correlated patterns
- Two tasks:
- Estimate how large is the effect
- De-sensitize statistics

- Monte-Carlo simulations:
- 100 million random points, assigned to stripes, runs, camcols, fields, x, y positions and redshifts => database
- Build MC error matrix due to zeropoint errors
- Include error matrix in the KL basis
- Some modes sensitive to zero points (\# of free pmts)
- Eliminate those modes from the analysis => projection Statistics insensitive to zero points afterwards

SDSS LRG Sample

- Three redshift samples in SDSS
- Main Galaxies
- 900K galaxies, high sampling density, but not very deep
- Luminous Red Galaxies
- 100 K galaxies, color and flux selected
- $\mathrm{m}_{\mathrm{r}}<19.5,0.15<\mathrm{z}<0.45$, close to volume-limited
- Quasars
- 20K QSOs, cover huge volume, but too sparsely sampled
- LRGs on a "sweet spot" for cosmological parameters:
- Better than main galaxies or QSOs for most parameters
- Lower sampling rate than main galaxies, but much more volume (>2 Gpc³)
- Good balance of volume and sampling

LRG Correlation Matrix

- Curvature cannot be neglected
- Distorted due to the angular-diameter distance relation (AlcockPaczynski) including a volume change
- We can still use a spherical cell, but need a weighting
- All reduced to series expansions and lookup tables
- Can fit for Ω_{Λ} or w!
- Full SDSS => good constraints
- $\quad \beta$ and σ_{8} no longer a constant

$$
\beta=\beta(z)=\Omega(z)^{0.6} / b(z)
$$

- Must fit with parameterized bias model, cannot factor correlation matrix same way (non-linear)

Fisher Matrix Estimators

- SDSS LRG sample
- Can measure Ω_{Λ} to ± 0.05
- Equation of state:

$$
\mathrm{w}=\mathrm{w}_{0}+\mathrm{z} \mathrm{w}_{1}
$$

Matsubara \& Szalay (2002)

Summary

- Large samples, selected on rest-frame criteria
- Excellent agreement between redshift surveys and photo-z samples
- Global shape of power spectrum understood
- Good agreement with CMB estimations
- Challenges:
- Baryon bumps, cosmological constant, equation of state
- Possible by redshift surveys alone!
- Even better by combining analyses!
- We are finally tying together CMB and low-z

