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Outline

• Lecture 1: 
– Basic cosmological background

– Growth of fluctuations

– Parameters and observables

• Lecture 2: 
– Statistical concepts and definitions

– Practical approaches

– Statistical estimators

• Lecture 3: 
– Applications to the SDSS

– Angular correlations with photometric redshifts

– Real-space power spectrum



Lecture #2

• Statistical concepts and definitions
– Correlation function

– Power spectrum

– Smoothing kernels

– Window functions

• Statistical estimators



Basic Statistical Tools

• Correlation functions

– N-point and Nth-order

– Defined in real space

– Easy to compute, direct physical meaning

– Easy to generalize to higher order

• Power spectrum

– Fourier space equivalent of correlation functions

– Directly related to linear theory

– Origins in the Big Bang

– Connects the CMB physics to redshift surveys

• Most common are the 2nd order functions:

– Variance σ8
2

– Two-point correlation function ξ(r)

– Power spectrum P(k)
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The Galaxy Correlation Function

• First measured by Totsuji and Kihara, then Peebles etal

• Mostly angular correlations in the beginning

• Later more and more redshift space

• Power law is a good approximation

• Correlation length r0=5.4 h-1 Mpc

• Exponent is around γ=1.8

• Corresponding angular correlations
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The Overdensity

• We can observe galaxy counts n(x), and 
compare to the expected counts 

• Overdensity

• Fourier transform

• Inverse

• Wave number
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The Power Spectrum

• Consider the ensemble average

• Change the origin by R

• Translational invariance

• Power spectrum

• Rotational invariance 
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Correlation Function

• Defined through the ensemble average

• Can be expressed through the Fourier transform

• Using the translational invariance in Fourier space

• The correlation function only depends on the distance
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P(k) vs ξξξξ(r)

• The Rayleigh expansion of a plane wave gives

• Using the rotational invariance of P(k)

• The power per logarithmic interval

• The power spectrum and correlation function 
form a Fourier transform pair
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Filtering the Density

• Effect of a smoothing kernel K(x), where

• Convolution theorem

• Filtered power spectrum

• Filtered correlation function
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Variance

• At r=0 separation we get the variance:

• Usual kernel is a ‘top-hat’ with an R=8h-1 Mpc radius

• The usual normalization of the power spectrum is using 
this window
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Selection Window

• We always have an anisotropic selection window, both 
over the sky and along the redshift direction

• The observed overdensity is

• Using the convolution theorem
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The Effect of Window Shape

• The lines in the spectrum are at least as broad as the 
window – the PSF of measuring the power spectrum!

• The shape of the window in Fourier space is the 
conjugate to the shape in real space

• The larger the survey volume, the sharper the k-space 
window => survey design
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1-Point Probability Distribution

• Overdensity is a superposition from Fourier space

• Each δ depends on a large number of modes

• Variance (usually filtered at some scale R)

• Central limit theorem: Gaussian distribution
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N-point Probability Distribution

• Many ‘soft’ pixels, smoothed with a kernel 

• Raw dataset x

• Parameter vector Θ
• Joint probability distribution is a multivariate Gaussian

• M is the mean, C is the correlation matrix

• C depends on the parameters Θ
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Fisher Information Matrix

• Measures the sensitivity of the probability distribution to 
the parameters

• Kramer-Rao theorem:
one cannot measure a parameter more accurately than
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Higher Order Correlations

• One can define higher order correlation functions

• Irreducible correlations represented by connected graphs

• For Gaussian fields only 2-point, all other =0

• Peebles conjecture: only tree graphs are present

• Hierarchical expansion

• Important on small scales
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Correlation Estimators

• Expectation value

• Rewritten with the density as

• Often also written as

• Probability of finding objects in excess of random

• The two estimators above are NOT EQUIVALENT
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Edge Effects

• The objects close to the edge are different

• The estimator has an excess
variance (Ripley)

• If one is using the first
estimator, these cancel
in first order 
(Landy and Szalay 1996)
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Discrete Counts

• We can measure discrete galaxy counts

• The expected density is a known <n>, fractional

• The overdensity is

• If we define cells with counts Ni
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Power Spectrum

• Naïve estimator for a discrete density field is 

• FKP (Feldman, Kaiser and Peacock) estimator
The Fourier space equivalent to LS
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Wish List

• Almost lossless for the parameters of interest

• Easy to compute, and test hypotheses
(uncorrelated errors)

• Be computationally feasible

• Be able to include systematic effects



The Karhunen-Loeve Transform

• Subdivide survey volume into thousands of cells

• Compute correlation matrix of galaxy counts among cells 
from fiducial P(k)+ noise model

• Diagonalize matrix
– Eigenvalues

– Eigenmodes

• Expand data over KL basis

• Iterate over parameter values:
– Compute new correlation matrix

– Invert, then compute log likelihood 

Vogeley and Szalay (1996)



Eigenmodes



Eigenmodes

• Optimal weighting of cells to extract signal represented 
by the mode

• Eigenvalues measure S/N

• Eigenmodes orthogonal

• In k-space their shape is 
close to window function

• Orthogonality = repulsion 

• Dense packing of k-space 
=> filling a ‘Fermi sphere’



Truncated expansion

• Use less than all the modes: truncation

• Best representation in the rms sense

• Optimal subspace filtering, throw away modes which 
contain only noise
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Correlation Matrix

• The mean correlation between cells

• Uses a fiducial power spectrum

• Iterate during the analysis
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Whitening Transform

• Remove expected count ni

• ‘Whitened’ counts

• Can be extended to other types of noise
=> systematic effects

• Diagonalization: overdensity eigenmodes

• Truncation optimizes the overdensity
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Truncation

• Truncate at 30 Mpc/h 
– avoid most non-linear effects

– keep decent number of modes


