Clusters of Galaxies

Sabine Schindler
University of Innsbruck

Outline

- Introduction
- Cluster masses, dark matter
- Evolution and dynamical state
- Distance determination
- Interaction of cluster components
- Magnetic fields, radio haloes, cooling flows

Clusters of Galaxies

- Largest bound structures
- Size ~ a few Mpc
- \rightarrow Mass ~ 10^{15} M_{sun}
- "Closed systems"
- Crossing time ~ Hubble time
- Observable out to large redshifts
 - → Ideal tools for cosmology

Some cosmological parameters

```
\Omega_m
 = matter density (in units of the critical density)
\Omega_{baryon} = baryon density (in units of the critical density)
         = contribution to the total mass-energy density
             associated with cosmological constant
                                    (in units of the critical density)
           \Omega_m = \Omega_{barvon} + \Omega_{dark}
           \Omega_{tot} = \Omega_m + \Omega_{\Lambda}
H_0 = Hubble constant (proportionality factor
                                    between expansion velocity
                                    and distance)
```

Cluster components

➤ Galaxies

- A few hundreds to thousands
- Velocity dispersion ~ 1000 km/s
- Excess of elliptical galaxies

Virgo Cluster

Very Large Telescope

- 4 Telescopes
- 8.2-m mirrors (22 tons)
- Active optics
- Adaptive optics
- Interferometer (VLTI)

Cluster Components

- ➤ Galaxies
- ➤ Intra-cluster gas
 - density $\sim 10^{-2} 10^{-4}$ cm⁻³
 - temperature $\sim 10^7 10^8 \text{ K } (1-10 \text{keV})$
 - metallicity ~ 0.2-0.4 solar
 - fully ionised
 - thermal bremsstrahlung
 - → X-ray emission (~ density²)
 luminosity ~ 10⁴³⁻⁴⁵ erg/s

Virgo Cluster in X-rays

Schindler et al. '99

RBS797 (z = 0.35, $T = 7.7^{+1.2}_{-1.0} \text{ keV}$) CHANDRA (0.5 – 7 keV)

Schindler et al. 2001

CL0939+4713 (XMM)

distant cluster

z = 0.41

consisting of two merging subclusters

De Filippis, Schindler, Castillo-Morales 2003

A3558 -

the centre of the Shapley Supercluster

XMM (0.3-10keV)

z = 0.048

T = 5keV

m=0.3solar

Sukonthachat et al., in prep.

Galaxy Groups HCG90 (CHANDRA)

Longo,
Paolillo,
De Filippis
(in prep.)

HCG62

CHANDRA

X-ray satellites

XMM

- ESA

CHANDRA

- NASA
- large collecting area
 high spatial resolution

Röntgenteleskop

- ➤ Infall at small angles (< 1°)
- Reflection at paraboloid and hyperboloid
- > Several nested mirror shells

Cluster Components

- Galaxies
- Intra-cluster gas
- Relativistic particles
 - radio synchrotron emission
 - → magnetic field ~ 10⁻⁶ G
 - accelerated in active galaxies
 or in shock from cluster mergers

Radio image of M87

Centre of the Virgo cluster

VLA
Owen et al. 2000

Radio emission has been found in many galaxies clusters

Radiotelescope

Very Large Array

Interferometry

	Mass fraction	Observable in
Galaxies	3 – 5 %	Optical
Intra-cluster gas	15 – 20 %	X-rays
Relativistic particles		Radio
Dark matter	Rest	-

Mass Determination

Three independent methods:

- 1. X-ray method
- 2. Gravitational lensing
- 3. Galaxy velocities

Mass Determination with X-ray Observations

Gas is used as tracer for potential

- spherical symmetry
- hydrostatic equilibrium

$$M(r) \propto T \left(\frac{d \ln \rho}{d \ln r} + \frac{d \ln T}{d \ln r} \right)$$

X-ray profile

Fit with β model

Deprojection

gas density (3D)

$$\rho(r) = \rho_0 \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3\beta/2}$$

(projected)

surface brightness
$$S(r) = S_0 \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3\beta + 1/2}$$

XMM spectrum of A3558

needed:

- good spatial resolution (Chandra)
- high sensitivity (XMM)
- spatially resolved spectroscopy (both)

Mass Determination with X-rays

Integrated profiles of

- total mass
- gas mass
- gas mass fraction

Schindler et al. '01

Mass Determination

Three independent methods:

- 1. X-ray method
- 2. Gravitational lensing
- 3. Galaxy velocities

Gravitational lensing

Strong lensing (giant arcs)

 Weak lensing (statistical evaluation of elongation of many galaxies)

RXJ1347 (VLT) Miralles, Erben, Schindler, Schneider, in prep.

A1689

HST

Arc search programme at ESO telescopes

Search in the most luminous X-ray clusters

Kausch et al., in prep.

Mass Determination

Three independent methods:

- 1. X-ray method
- 2. Gravitational lensing
- 3. Galaxy velocities

$$M_X \approx M_{vel} \leq M_{weak\ lens.} \leq M_{strong\ lens.}$$

How good is the X-ray method?

- ➤ hydrostatic equilibrium ?
 - good assumption for relaxed clusters (Schindler '96)
- > spherical symmetry?
 - good assumption
 (Piffaretti, Jetzer, Schindler '03)
- ➤ non-thermal pressure ?
 - magnetic pressure is not a problem
 (Dolag & Schindler '00)

Total mass of elongated clusters

Gas mass fraction of elongated clusters

Projected mass of elongated clusters

How good is the X-ray method?

- ➤ hydrostatic equilibrium ?
 - good assumption for relaxed clusters (Schindler '96)
- > spherical symmetry?
 - good assumption
 (Piffaretti, Jetzer, Schindler '03)
- ➤ non-thermal pressure ?
 - magnetic pressure is not a problem
 (Dolag & Schindler '00)

Magnetic fields – do they affect the mass determination?

- X-ray mass uses only thermal pressure
- additional magnetic pressure could lead to an underestimate

- > effect is negligible in normal clusters
- > only important in mergers

Most likely reasons for mass discrepancy:

- projection effects
- >non-equilibrium

Gas mass fractions

$$\rightarrow$$
 $\langle f_{gas} \rangle = 0.16 \pm 0.03$

- ➤ No clear trend with redshift
- ➤ Variation of gas mass fraction ?

Relative Gas Extent

➤ Gas distribution is more extended than the dark matter distribution

$$E = \frac{f_{gas}(r_{500})}{f_{gas}(r_{500}/2)}$$

Relative gas extent shows a mild dependence on the total mass additional heating processes

Castillo-Morales & Schindler '03

Dark matter

We can determine

- > the amount of dark matter
- > the distribution of dark matter

We cannot determine

> the nature of dark matter

Matter Density $\Omega_{\rm m}$

- X-ray observations
 - baryon fraction ($f_{gas} \sim 0.15-0.20$)
- primordial nucleosynthesis
 - upper limit for $\Omega_{\text{baryon}} < 0.06$

$$\Omega_m \leq \frac{\Omega_{baryon}}{f_{gas}} \approx 0.3 - 0.4$$

Dynamical State

Determination of dynamical state is very important, because ...

matter density Ω_m depends sensitively on the dynamical state

Simulation

How do we determine the dynamical state?

Observations only snapshots

Numerical simulations follow the evolution

Different components

- → galaxies, dark matter → N-body

Collaboration between

- ➤ Innsbruck (Domainko, Kapferer, Kimeswenger, Mair, Schindler, van Kampen)
- ➤ Edinburgh (Mangete, Ruffert)
- ➤ Potsdam (Benger)

So far only test runs!!!

Evolution of a subcluster merger (X-ray emission)

CL0939+4713 (XMM)

De Filippis, Schindler, Castillo-Morales, 2003

distant cluster

z = 0.41

consisting of two merging subclusters

Temperature Map

CL0939+4713 (z = 0.41), XMM (MOS1+MOS2+PN)

Hot region between two subclusters

Temperature

The Shapley Supercluster

Region with very high cluster density

First complete analysis of the region in X-rays (ROSAT All-Sky Survey)

Development of a new detection algorithm optimised for clusters

The Shapley Supercluster

- cluster density in Shapley 1.7 10⁻⁵ Mpc⁻³
- average cluster density
 1.2 10⁻⁶ Mpc⁻³

high-density environment >
higher merging rate