

Matrix-Element-Corrected Parton Showers: Pythia Update Stephen Mrenna

Fermilab, Computing Division, Simulations Group

Michigan Center for Theoretical Physics

mailto:mrenna@fnal.gov
MC4LHC Working Group on MEs and Matching

↓
↓
Back
Close

Previous Work

- PR (HERWIG) and SM (Pythia) agreed on "trivial" changes to implement CKKW
 - Allow for arbitrary starting scale per parton
 - Veto on emissions harder than an arbitrary scale
- k_T is not the "natural" kinematic variable
 - HERWIG: heta via $\sqrt{\xi} \sim heta$
 - Pythia: heta via m^2, z
- Results were not entirely discouraging for e^+e^- test case
 - $p_T^2 = z(1-z)m^2$ or $\min(z,1-z)m^2$ gave a better description in Pythia
 - Kinematics at any stage in the shower is not the same at the end of the shower: not vetoing the exact variable

↓
↓
Back
Close

Back Close

Description of Plots

• Events are k_T -clustered at the parton or hadron level

- $k_T^2 = 2\min(E_i, E_j)^2(1 \cos\theta) = \min(E_i/E_j, E_j/E_i)m_{ij}^2$
 - k_T^1 is hardest, $k_T^2 < k_T^1$, $k_T^{m+1} < k_T^m$

In hadronic collisions, particle can also be clustered with beam

- For W+1 parton, $k_T^1 = p_T$ of parton
- In e^+e^- , plot $\log_{10}(y)$, $y=k_T^2/E_{\rm cms}^2$
- $Q_{\rm res} = k_T$ -cutoff applied on ME events

Colors

- Cyan = Ordinary PS result (with built-in ME correction)
- White = ME-corrected PS result (no built-in correction)
- Magenta = 0 emission correction
- Yellow = 1 emission correction, etc.

$\min(z, 1-z)Q^2$: $Q_{\rm res} = 2.9 \,\,{\rm GeV}$

Hadron Level

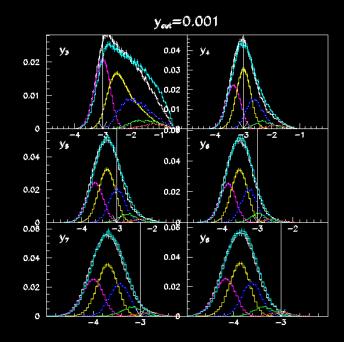
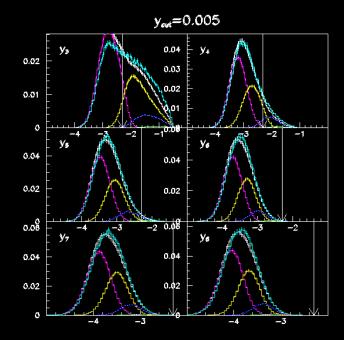
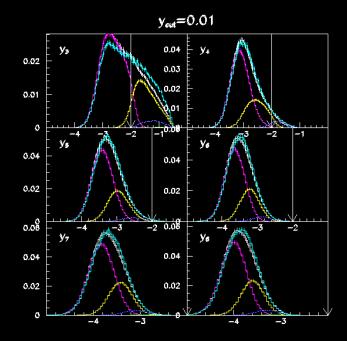



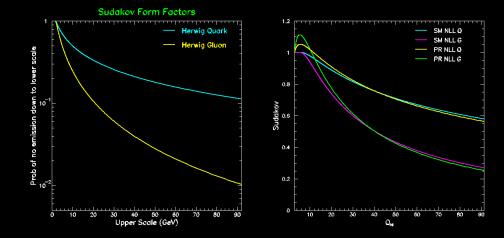
Image: A state of the state of the

 $\min(z, 1-z)Q^2$: $Q_{\rm res} = 6.5 \,\,{\rm GeV}$

Hadron Level

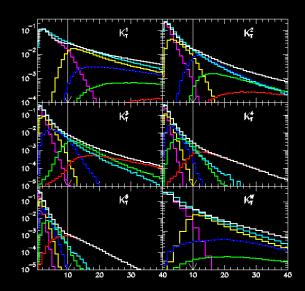


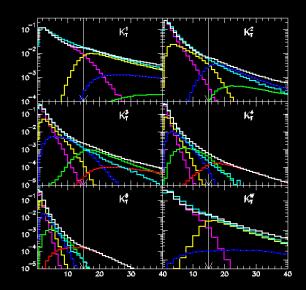
$\min(z, 1-z)Q^2$: $Q_{\rm res} = 9.2 \,\,{\rm GeV}$


Hadron Level

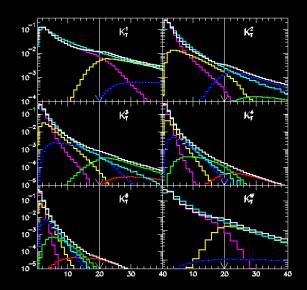
Sudakovs

Which one?




Implementation at a Hadron Collider

W Production at the TeVatron $k_T = 10$ GeV, veto on $p_T^2 = (1-z)Q^2$

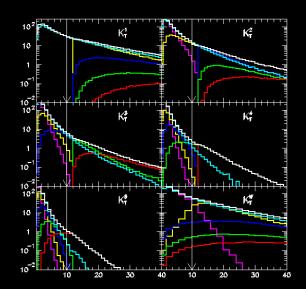


W Production at the TeVatron $k_T = 15$ GeV, veto on $p_T^2 = (1-z)Q^2$

W Production at the TeVatron $k_T=20$ GeV, veto on $p_T^2=(1-z)Q^2$

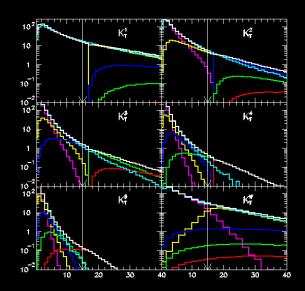
Comments

- Radiation Dips and Bumps
 - Consequence of the shower veto on an approximation to the k_T
 - i.e. approximation that daughters are (initially) massless
 - No way around this with the current shower algorithm
- Rethink the problem
 - Redo the parton shower?
 - Requires retuning/testing of hadronization
 - Relate the natural PS variable to the matrix element cut?
 - heta in HERWIG, p_T in Pythia
 - Not obvious that k_T is the best-behaved variable
 - hep-ph/9804296 [LL,TS,SMo]
 - Apply full veto at end of shower?
 - Better apply Sudakov of the shower itself

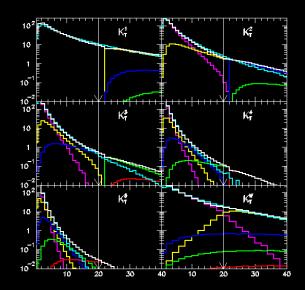

Back Close

Analytic \Rightarrow Monte Carlo Sudakovs

- based on idea of Leif L.:: hep-ph/0112284+JHEP
 - applied to $e^+e^- \rightarrow 4j$ using Ariadne
- Mixes two ideas, but I think they are related
- PS mapping of events
 - Calculate internal Sudakov factors from "pseudo" showers
 - W + N partons $\Rightarrow N + 1$ resolved showers
 - Use rejection (throw event away) if $k_T > k_T^{
 m res}$
 - Internal veto uses approximate one based on p_T
 - Slight oversampling makes smooth transition



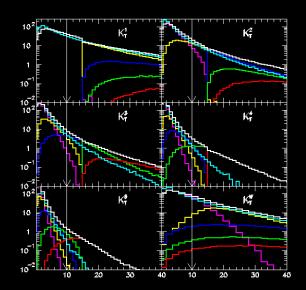
Pythia Pseudo-Showers W Production at the TeVatron $k_T = 10/12 \text{ GeV}$

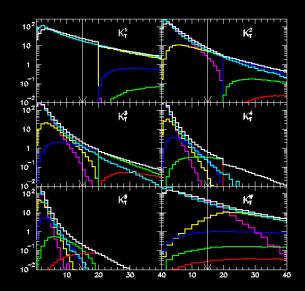


W Production at the TeVatron $k_T = 15/17 \,\, { m GeV}$

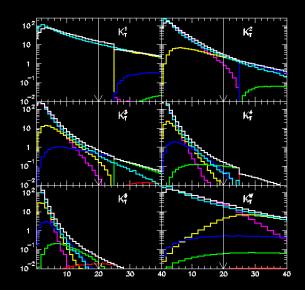
W Production at the TeVatron $k_T=20/22~{ m GeV}$

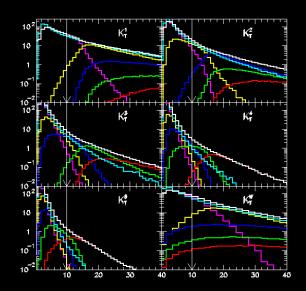
Shower History

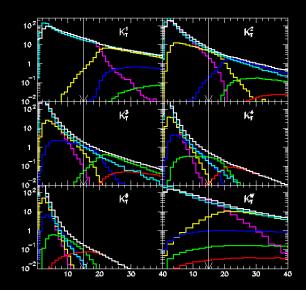

- Details of Shower History are Important
 - Try to use full color+flavor information
 - flavor,color lines
 - If not possible, throw away color
 - 1/N suppressed color flows
 - clustering gets stuck
 - small effect
 - When no history exists, pass as a true ME correction
 - No Sudakov suppression
 - Only require k_T above resolution scale
- "Factorized" expression only in soft-collinear limit

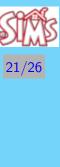


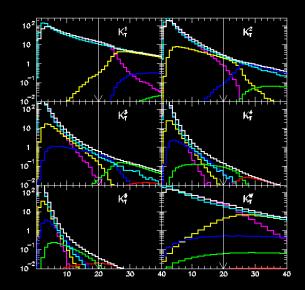

HERWIG Pseudo-Showers W Production at the TeVatron $k_T = 10/15 \text{ GeV}$


W Production at the TeVatron $k_T = 15/20 \text{ GeV}$


W Production at the TeVatron $k_T=20/25~{ m GeV}$




HERWIG at HADRON level W Production at the TeVatron $k_T = 10/15$ GeV


W Production at the TeVatron $k_T = 15/20 \text{ GeV}$

W Production at the TeVatron $k_T=20/25~{ m GeV}$

Facts

- Internal veto on HERWIG $(2-\xi)(z_1z_2Q_{
 m now})^2$
- Starting scales set to k_T values
- Starting scales in Pythia are m values (for given k_T)

• $k_T < m$

• Need to optimize treatment of highest multiplicity

Future Work

- cluster with and without color information
- shower modifications
 - post-LH:: New p_T -ordered parton shower exists (TS)
- ME clustering on different kinematic variables
 - e.g. p_T with respect to mother

Matching is not trivial

- All ME-PS interfaces have some systematics
- How large?
- I feel safer using the Monte Carlo to determine the matching
- MLM prescription is working this way
 - throw away events that are too hard
 - Rejection method of sampling
 - Intrinsic k_T cutoff $= E_T^{\min} \Delta R_{\min}$
 - Applying no internal Sudakov suppression
 - okay if internal momenta are large

Applicability

Can we apply a K-factor?

 $\begin{aligned} \sigma &= \sigma_0 \otimes (\mathsf{PS}) & (\mathsf{PY}, \mathsf{HE}) \\ \sigma &= \sigma_0 \otimes (\mathsf{PS}) \underbrace{-\sigma_0 \otimes (\mathsf{PS})|_{\mathsf{FO}} + +\sigma(\mathsf{ME})|_{\mathsf{FO}}}_{\mathsf{FO}} & (\mathsf{CKKW}) \\ \sigma &= W + Y & (\mathsf{CSS}) \end{aligned}$

- We are making a mistake in rescaling to NLO
- It is a smaller mistake than applying a K factor to LO-PS

