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• Collection of MC codes for many processes relevant in h–h collisions

• Exact LO matrix element calculations based on the ALPHA algorithm

• Parton-level event generation (weighted and unweighted)

• Interface to Herwig/Pythia for the evolution of the partonic final state

through parton shower

Up to now available processes

• W + N jets, Z/γ + N jets, N ≤ 6

• WQQ̄ + N jets, Z/γQQ̄ + N jets (Q = b, t), N ≤ 4

• W + c + N jets, N ≤ 5

• n W + m Z + p Higgs + N jets, n + m + p ≤ 8, N ≤ 3

• QQ̄ + N jets, (Q = b, t), N ≤ 6

• QQ̄Q′Q̄′ + N jets, (Q, Q′ = b, t) , N ≤ 4

• N jets, N ≤ 6

• QQ̄H + N jets, (Q = b, t), N ≤ 4



The directory structure

2Qlib History.txt QQhwork readme.txt wcjetwork zjetlib

2Qwork Makefile VF90 v122.tgz wjetlib zjetwork

4Qlib Njetslib alplib vbjetslib wjetwork zqqlib

4Qwork Njetswork herlib vbjetswork wqqlib zqqwork

DOCS QQhlib pylib wcjetlib wqqwork

The common driver is in alplib/alpgen.f:

C-----------------------------------------------------------------

program alpgen

C-------------------------------------------------------------------------

C

C driver for multi-parton matrix element generator based on ALPHA

C

C--------------------------------------------------------------------------

C

C setup running defaults:

c

call setdef

c

c Routine location: alplib/alpgen.f



c Purpose:

c - initialise the default generation parameters (e.g. beam

c type, energy, PDF set)

c - initialise default mass and couplings for particles

c

c

C input user-set running parameters and generation cuts:

c

call setusr

c

c Routine location: XXXwork/XXXusr.f (e.g. wqqwork/wqqusr.f)

c Purpose:

c -change the defaults set in setdef

c -initialise the parameters

c specific to the desired process (XXX)

c

c

c

C setup event generation options, bookkeeping, etc

call setgen

c

c Routine location: XXXlib/XXX.f



c Purpose:

c - setup event generation options, bookkeeping, etc, for

c the specific process XXX

c - evaluate process-dependent quantities

c (e.g. Higgs width)

c - fill the parameters required by ALPHA

c

c

C setup histograms

call sethis

c

c Routine location: XXXwork/XXXusr.f

c Purpose: initialise histograms

c

c

C setup integration grids, including optimization if required

c

call setgrid

c

c Routine location: XXXlib/XXX.f

c Purpose: setup integration grid variables

call inigrid



c

c Routine location: alplib/alpgen.f

c Purpose: initialise grid with warm-up iterations, if required

c

c

C generate events

c

call evtgen

c

c Routine location: alplib/alpgen.f

c Purpose: generates events, calling in a standad format the

c the process-dependent phase-space and flavour-selection

c routines, contained in XXXlib/XXX.f

C finalise histograms

c

call finhis

c

c Routine location: XXXwork/XXXusr.f

c Purpose: finalize analysis and histograms

c

end



How to run a specific process (e.g. Wqq+jets)?

> cd wqqwork

> make wqqgen

The input file:

0 ! imode (0,1,2)

’output’ ! label for files

1 ! initial state (1=pp, -1=ppbar)

7000d0 2 ! beam energy in CM frame and PDF set

4.75d0 ! Q mass

4 ! total number of final-state QCD partons (included Q and Qbar)

30 2.5 0.7 ! ptmin(j) etamax(j), deltaRmin(j-bbar)

30 2.5 0.7 ! ptmin(b) etamax(b), deltaRmin(b-bbar)

0d0 10d0 0d0 0d0 ! ptmin(lept), etamax(lept), deltaRmin(lep-j), etmiss

1 1d0 ! iqopt, qfac

0 ! start with: 0=new grid, 1=previous warmup grid, 2=previous generation grid

500000 4 ! Nevents/iteration, N(warm-up iterations)

1000000 ! Nevents generated after warm-up

1 ! 1: change default random number seed, 0: keep default seed

54345

65455



The Matrix Element computation

Multiparticle amplitudes involve the evaluation of large numbers of Feynamn
diagrams. e.g.

Process n = 7 n = 8 n = 9 n = 10

g g → n g 559,405 10,525,900 224,449,225 5,348,843,500

qq̄ → n g 231,280 4,016,775 79,603,720 1,773,172,275

Table 1: Number of Feynman diagrams corresponding to amplitudes with different

numbers of quarks and gluons.

F. Caravaglios et al., NPB 539 (1999) 215

A pure numerical approach to the calculations of transition amplitudes is

welcome. This can be done with the ALPHA algorithm

F. Caravaglios and M. Moretti, PLB 358 (1995) 332

The Idea: The Matrix Element ‘is’ the Legendre Transform Z of the (effective)
lagrangian Γ (1PI Green Functions generator) → the problem can be recasted
as a minimum problem, more suitable for a numerical approach (DS equation).



Subprocess selection

The calculation of the cross section for multiparton final states involves

typically the sum over a large set of subprocesses and flavour configurations

e.g. for the Wbb̄ final state

jp subprocess jp subprocess jp subprocess

1 qq̄′ → WQQ 2 qg → q′WQQ 3 gq → q′WQQ

4 gg → qq̄′WQQ 5 qq̄′ → WQQq′′q̄′′ 6 qq′′ → WQQq′q′′

7 q′′q → WQQq′q′′ 8 qq̄ → WQQq′q̄′′ 9 qq̄′ → WQQqq̄

10 q̄′q → WQQqq̄ 11 qq̄ → WQQqq̄′ 12 qq̄ → WQQq′q̄

13 qq → WQQqq′ 14 qq′ → WQQqq 15 qq′ → WQQq′q′

16 qg → WQQq′q′′q̄′′ 17 gq → WQQq′q′′q̄′′ 18 qg → WQQqqq̄′

19 qg → WQQq′qq̄ 20 gq → WQQqqq̄′ 21 gq → WQQq′qq̄

22 gg → WQQqq̄′q′′q̄′′ 23 gg → WQQqq̄qq̄′

Each of these subprocesses receives contributions from several possible flavour
configurations (e.g. ud̄ → WQQgg , us̄ → WQQgg, etc.).



Our subdivison in subprocesses is designed to allow to sum the contribution of
different flavour configurations by simply adding trivial factors such as parton
densities or CKM factors, which factorize out of a single, flavour independent,
matrix element

For example the overall contribution from the 1st process in the list is given by
[

u1d̄2 cos2 θc + u1s̄2 sin2 θc + c1s̄2 cos2 θc + c1d̄2 sin2 θc

]

× |M(qq̄′ → WQQgg)|2

where qi = f(xi), i = 1, 2, are the parton densities for the quark flavour q.

Contributions from charge-conjugate or isospin-rotated states can also be

summed up, after trivial momentum exchanges. For example, the same matrix

element calculation is used to describe the four events:

u(p1)d̄(p2) → b(p3)b̄(p4)g(p5)g(p6)e
+(p5)ν(p6)

ū(p1)d(p2) → b̄(p3)b(p4)g(p5)g(p6)e
−(p5)ν̄(p6)

d̄(p1)u(p2) → b̄(p3)b(p4)g(p5)g(p6)ν(p5)e
+(p6)

d(p1)ū(p2) → b(p3)b̄(p4)g(p5)g(p6)ν̄(p5)e
−(p6)

Event by event, the flavour configuration for the assigned subprocess is then
selected with a probability proportional to the relative size of the individual
contributions to the luminosity, weighted by the Cabibbo angles



Phase Space generation

Two quantities must be kept maximal, namely the Monte Carlo generation
efficiency εg, that is the ratio between the maximum and the average weight,
and the Phase Space generation efficiency εPS, defined as the ratio between
the number of events that fall inside the cuts and the total number of
generated events.

The main idea is generating events directly in terms of quantities measured in
the Laboratory Frame, namely pseudo-rapidities ηi, transverse momenta pTi

and azimuthal angles φi. This gives the possibility of generating kinematical
variables, with given probability densities, directly within the cuts, increasing
εPS.

After integrating over the momentum fractions x1 and x2 of the initial state

partons, the n-body Phase Space integral

∫
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∫
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gives the expression

I =
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In the previous equations

P =

√
s

2
(x1 + x2, 0, 0, x1 − x2)

pi = (Ei, pTi sin(φi), pTi cos(φi), pLi) ,

βi =

√

1 − m2
i

E2
i

, (3)

where Ei =
√

p2
Ti cosh2(ηi) + m2

i and pLi = pTi sinh(ηi) are the energies and

the longitudinal momenta of the outgoing partons. Notice the presence of non

vanishing masses mi for the outgoing particles.

With a change of variable, one can generate x1 and x2 instead of ηn and ηn−1.



Further Improving the efficiencies

We are left with the choice of the probability distributions for all the

remaining integration variables. While it is easy to argue leading behaviors

such as, for example, 1/p`
T for the transverse momenta, the best value of ` to

be used is in general difficult, if not impossible, to establish a-priori; without

mentioning that it may also depend on the generation range of pT . Therefore,

to increase the Monte Carlo generation efficiency εg, we have to rely on

self-adapting procedures.

Our strategy is best illustrated with a 1-dimensional example. Imagine we

have to compute numerically the integral

I =

∫ 1

0

dxf(x) . (4)

We can split the integration interval into N bins, multiply and divide by

a-priori weights αi, normalized such that
∑N

i=1 αi = 1, and rewrite

I =
N

∑

i=1

αi Ji , Ji =
1

αi

∫ i/N

(i−1)/N

dxf(x) ≡ 1

αi

Ii . (5)

The original integral is then re-expressed as a sum of terms, that we can



perform by Monte Carlo. More explicitly, we start with αi = 1/N and choose

to generate the variable x between (j − 1)/N and j/N if a uniformly generated

random number 0 < ρ < 1 falls between
∑j−1

i=1 αi and
∑j

i=1 αi. While

performing the Monte Carlo integration, we bookkeep the estimated values for

the N quantities Ii, and, after a few thousand points, define a new set of

weights as follows:

α′

i =
Ii

∑N
j=1 Ij

. (6)

After few iterations, the probability of choosing the ith generation interval for

x, becomes proportional to Ii, namely to the contribution of the ith interval to

the whole result, improving εg.

The extension to m-dimensional integrations is straightforward. Instead of

equation (4) we have

I =
m
∏

i=1

∫ 1

0

dxif(~x) , (7)

so that each of the m integrations can be separately treated as described.



Notice that each variable is re-weighted independently from the others, so that

non factorizable peaking structures may cause problems during the

self-adaptation. In this respect, our procedure is quite similar to the classical

VEGAS algorithm, the only difference being that, instead of changing the size of

the bins, we re-weight them.

With the help of the above procedure, one improves not only εg, but also the
Phase Space generation efficiency εPS of the Monte Carlo. The reason is that
when, due to the cuts, a particular bin gives a small contribution, the
corresponding resulting weight, computed with equation (6), is also small.

To further contribute to the efficiency of the phase space sampling,

independent grids are employed to sample different subprocesses. In particular,

one phase space grid is associated to each of the following initial states:

1. qq̄, qq̄′ and charge conjugates

2. qg and q̄g

3. gq and gq̄

4. gg

5. qq, qq′ and charge conjugates



Reconstruction of colour flows

The emission of soft gluon radiation in shower MC programs accounts for

quantum coherence, which is implemented via the prescription of angular

ordering in the parton cascade. The colour flow is the set of colour connections

among the partons which defines the set of dipoles for a given event

In order to reliably evolve a multiparton state into a multijet configuration, it

is necessary to associate a specific colour-flow pattern to each generated

parton-level event

Consider for example the case of multigluon processes. The scattering
amplitude for n gluons with momenta pµ

i , helicities εµ
i and colours ai (with

i = 1, . . . , n), can be written as
F.A. Berends and W. Giele, NPB 294 (1987) 700

M. Mangano, S. Parke and Z. Xu, NPB 298 (1988) 653

M({pi}, {εi}, {ai}) =
∑

P (2,3,...,n)

tr(λai1 λai2 . . . λain )A({pi1}, {εi1}; . . . {pin}, {εin})



The functions A({Pi}) (known as dual or colour-ordered amplitudes) are
gauge-invariant, cyclically-symmetric functions of the gluons’ momenta and
helicities. Each dual amplitude A({Pi}) corresponds to a set of diagrams
where colour flows from one gluon to the next, according to the ordering
specified by the permutation of indices

When summing over colours the amplitude squared, different orderings of dual
amplitudes are orthogonal at the leading order in 1/N 2

∑

col′s

|M({pi}, {εi}, {ai})|2 = Nn−2(N2 − 1)
∑

Pi

[

|A({Pi})|2 +
1

N2
(interf.)

]

At the leading order in 1/N 2, therefore, the square of each dual amplitude is
proportional to the relative probability of the corresponding colour flow. Each
flow defines, in a gauge invariant way, the set of colour currents which are
necessary and sufficient to implement the colour ordering prescription
necessary for the coherent evolution of the gluon shower. Because of the
incoherence of different colour flows, each event can be assigned a specific
colour configuration by comparing the relative size of |A({Pi})|2 for all
possible flows



When working at the physical value of Nc = 3, the interferences among
different flows cannot be neglected in the evaluation of the square of the
matrix element. As a result, the basis of colour flows does not provide an
orthogonal set of colour states ⇒

Our solution for and efficient color generation including 1/N

corrections in the Matrix Element evaluation:

• choose a standard SU(3) orthonormal basis (Gell-Mann matrices for

example)

• randomly select a non-vanishing colour assignement for the exernal gluons

• if the event is accepted choose randomly among the contributing dual

amplitudes a color flow on the basis of their relative weight

Two advantages

– dual amplitudes required only for a small number of phase space points

– contributing dual amplitudes to a given external coulor assignment �
than total number.



Top decays with full spin correlations

In tt̄+ jets the top quarks are generated on shell, however the decay t → bf f̄ ′

is generated with exact matrix element keeping top quark and W boson on
shell, in order to avoid inclusion of non-resonant diagrams while retaining
gauge invariance. In so doing all spin correlations between top decay products
are exactly taken into account



Multi-boson + jets production

W/Z gauge bosons produced on shell and let decay in fermionic pairs in the

zero width approximation but including exact spin correlations among the

decay products

Gauge invariance: the calculation of multi-boson final states requires a careful

treatment of the widths in the propagators because they generally break gauge

invariance, giving rise to bad high energy behaviour of the cross sections. The

strategy adopted in ALPGEN is to calculate the matrix element with Γi = 0,

by cutting away events around the mass of the instable particle M is such a

way to keep the area of a Breit-Wigner distribution
∫ M2

−s0

−∞

ds
1

(s − M 2)2
=

∫ M2

−∞

ds
1

(s − M 2)2 + Γ2M2

that gives s0 = 2ΓM
π

and the condition

|s − M 2| ≥ 2ΓM

π



Higgs production processes

• tt̄H+ jets

• bb̄H+ jets

• H+ gauge bosons + jets

• gg → H+ jets (work in progress)

Spin correlations in top and gauge boson decays exactly taken into account At
present no Higgs decay implemented (work in progress)

List of wishes

• Inclusion of CKKW algorithm

• Inclusion of p.d.f. with errors

• Improving the generation efficiency


