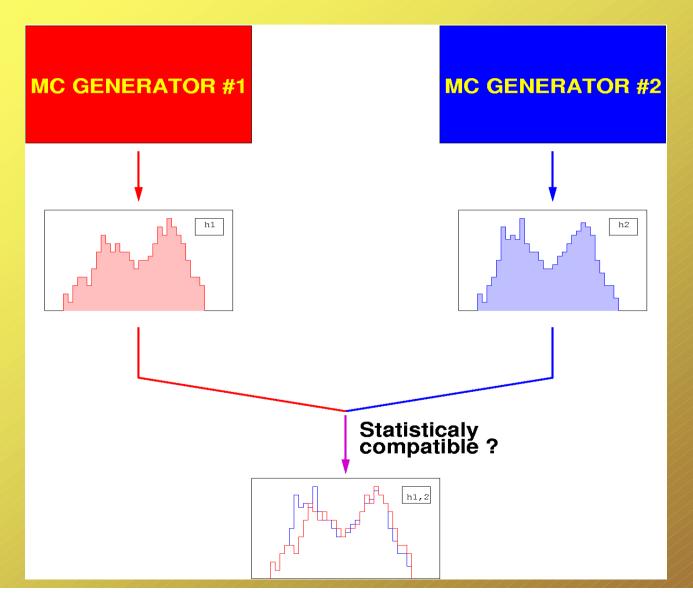
MC-TESTER:

a universal tool for automated comparisons of HEP Monte Carlo generators

STATUS REPORT


Piotr Golonka
Piotr.Golonka@CERN.CH , tel.73826
FNPT UMM Kraków, CERN

Monte Carlo Tools for LHC Workshop, CERN, 9 July 2003

Excuses...

• For a computer-scientist point of view of the aspects of particle physics...

MC-TESTER: why?

- •Porting MC generators to C++
- •Automated tests of installations of large MC systems

MC-TESTER: a tool for comparisons of HEP MC Generators:

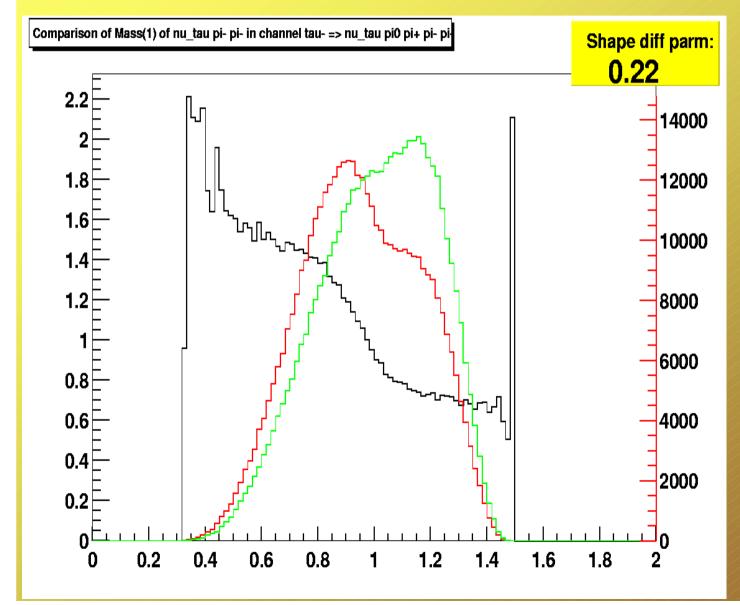
- •For two (or more) compared MC generators:
 - Identifies all decay channels for a given particle, calculates branching ratios
 - Compares distributions of invariant masses of particle decay products in every channel
 - Not limited to decay processes!

Found decay modes:

Decay channel	Branching Ratio ± Rough Errors Generator #1 Generator #2		Max. shape dif. param.
$\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^-$	$25.3683 \pm 0.0159\%$	$25.3085 \pm 0.0159\%$	0.04375
$\tau^- \to e^- \widetilde{v_e} v_{\tau}$	$17.8479 \pm 0.0134\%$	$18.1093 \pm 0.0135\%$	0.00000
$\tau^- \to \mu^- \widetilde{\nu_{\mu}} \nu_{\tau}$	$17.3866 \pm 0.0132\%$	$17.6326 \pm 0.0133\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^-$	11 0768 ± 0.0105%	11 1765 + 0.0106%	0.00000
$\tau^- \to \nu_\tau \pi^0 \pi^0 \pi^-$	$9.1865 \pm 0.0096\%$	$9.1171 \pm 0.0095\%$	0.09413
$\tau^- ightarrow u_{ au} \pi^+ \pi^- \pi^-$	$8.9837 \pm 0.0095\%$	$8.8828 \pm 0.0094\%$	0.09368
$ au^- ightarrow u_ au \pi^0 \pi^+ \pi^- \pi^-$	$4.2973 \pm 0.0066\%$	$4.5319 \pm 0.0067\%$	0.30310
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^0 \pi^0 \pi^-$	1.0765	$1.0090 \pm 0.0032\%$	0.00724
$\tau^- \rightarrow \nu_{\tau} K^-$	$0.7202 \pm 0.0027\%$	$0.7138 \pm 0.0027\%$	0.00000
$ au^- ightarrow u_ au \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.4990 \pm 0.0022\%$	$0.0897 \pm 0.0009\%$	9.60000
$ au^- ightarrow au_ au \pi^0 K^-$	$0.4785 \pm 0.0022\%$	0.464	0.00000
$ au^- ightarrow u_ au K_L^0 \pi^-$	$0.4624 \pm 0.0022\%$	$0.4444 \pm 0.0021\%$	0.00000
$ au^- ightarrow au_ au \pi^- K_S^0$	$0.4610 \pm 0.0021\%$	$0.4449 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^+ \pi^- K^-$	$0.3902 \pm 0.0020\%$	$0.5051 \pm 0.0022\%$	0.52330
$ au^- ightarrow u_ au \pi^0 \pi^- \eta$	$0.1707 \pm 0.0013\%$	$0.1696 \pm 0.0013\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^- K^+ K^-$	0.1704 ± 0.0013	$0.1500 \pm 0.0012\%$	0.07360
$ au^- ightarrow u_ au \pi^0 K_L^0 \pi^-$	$0.1605 \pm 0.0013\%$	$0.2745 \pm 0.0017\%$	0.92850
$\tau^- \to \nu_\tau \pi^0 \pi^- K_S^0$	$0.1592 \pm 0.0013\%$	$0.2734 \pm 0.0017\%$	0.93657
$ au^- ightarrow u_ au \gamma \pi^0 \pi^-$	$0.1559 \pm 0.0012\%$	$0.1303 \pm 0.0011\%$	0.00000
$\tau^- \to \nu_\tau K_L^0 \pi^- K_S^0$	$0.1510 \pm 0.0012\%$	$0.0763 \pm 0.0009\%$	0.00270
$\tau^- \rightarrow \nu_{\tau} K_L^0 K^-$	$0.1289 \pm 0.0011\%$	$0.0508 \pm 0.0007\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} K_S^0 K^-$	$0.1287 \pm 0.0011\%$	$0.0507 \pm 0.0007\%$	0.00000
$\tau^- o \nu_{\tau} \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.1094 \pm 0.0010\%$	$0.0506 \pm 0.0007\%$	0.00000
$ au^- ightarrow au_ au \pi^+ \pi^+ \pi^- \pi^- \pi^-$	$0.0803 \pm 0.0009\%$	$0.0401 \pm 0.0006\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^0 K^-$	$0.0792 \pm 0.0009\%$	$0.0504 \pm 0.0007\%$	0.29196
$\tau^- \rightarrow \nu_{\tau} K_L^0 K_L^0 \pi^-$	$0.0760 \pm 0.0009\%$	$0.0372 \pm 0.0006\%$	0.00854
$\tau^- \to \nu_\tau \pi^- K_S^0 K_S^0$	$0.0756 \pm 0.0009\%$	$0.0378 \pm 0.0006\%$	0.01189
$\tau^- \to \nu_\tau \pi^0 K_L^0 K^-$	$0.0507 \pm 0.0007\%$	$0.0763 \pm 0.0009\%$	0.85321
$\tau^- \to \nu_\tau \pi^0 K_S^0 K^-$	$0.0498 \pm 0.0007\%$	$0.0746 \pm 0.0009\%$	0.87506
$\tau^- \to \nu_\tau \pi^0 \pi^+ \pi^+ \pi^- \pi^- \pi^-$	$0.0186 \pm 0.0004\%$	$0.0293 \pm 0.0005\%$	0.00000

Table of decay modes:

Decay channel

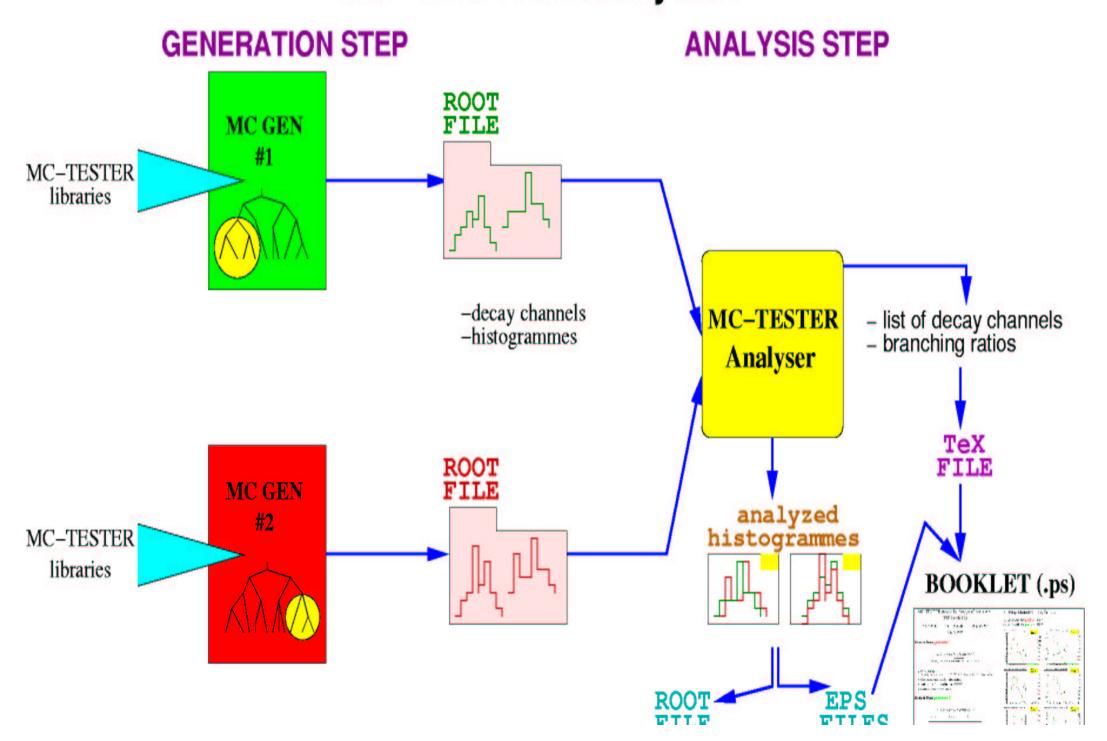

Branching ratio for generator #1 and #2

Rough statistical errors of branching ratios

Maximal "Shape Difference Parameter"

- Similarity Coefficients

Example of histogrammes:

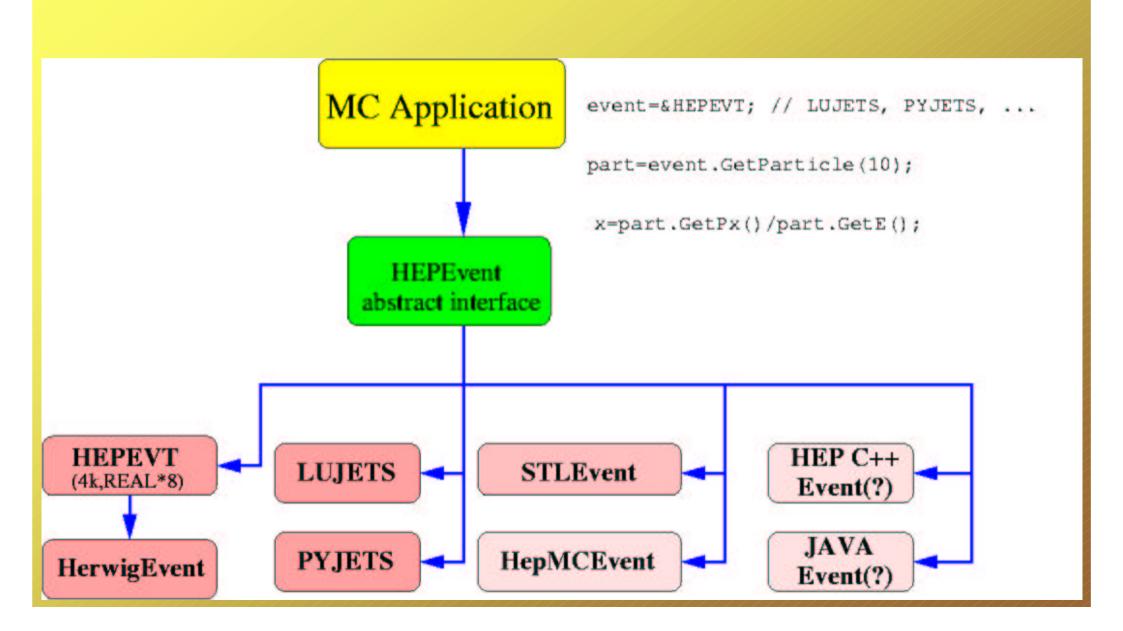


•Histogrammes of invariant mass from generator #1 and #2

•Ratio of the two histogrammes

Shape Difference
Parameter value

MO-ILJILN analysis.



MC-TESTER implementation:

- •C++ with F77 interface
- •ROOT used for histogramming and data storage
- LaTeX for booklet preparation
- •HEPEvent library provides unified access to various event record structures
- •Parameters controlled by ROOT/C++ macro files
- •Tested with F77 and F90 MC generators
- •Linux (RedHat 6/7/8)

HEPEvent library:

a unified interface to event record formats

Extensions:

•Infrastructure created for user-level extensions, e.g.:

- For Linear Collider workshop: 6f production analysis: replaced by
- Other processes may be implemented in the same way
- Algorithms for Shape Difference Parameter calculation
- ROOT data files from generation step may be

Status and Availability:

- Version 1.0 released already in October 2002
- Extended versions released for Linear Collider Monte Carlo Workshop
- Version 1.1 released on July 8th, 2003
- Available on the web:

http://cern.ch/Piotr.Golonka/MC/MC-TESTER

Documentation:

Preprints:

- -CERN-TH/2002-271 (ver. 1.0)
- -LANL: hep-ph/0210252 (ver 1.1)

submitted to Comp.Phys.Communications

Also presented at ECFA-DESY LC Workshops (Prague, Amsterdam) and ATLAS Higgs WG

Available on MC-TESTER homepage

Final comments:

- MC-TESTER already proven to be useful (LC, ATLAS)
- Easily integrates with existing MC environments in F77 / F90 / (C++?) / (others?)
- .We haven't used MC-TESTER with C++ generators yet
- We work on HEPEvent library to provide an interface to HEPMC event record standard
- Other event record standards may also be considered

Final comments:

We are open to discussions and suggestions of new MC-TESTER features and areas of use.

More information on this topics on the Decay Packages session, Thursday, July 24.

Acknowledgments:

Zbigniew Wąs and Tomasz Pierzchała,

co-authors of the MC-TESTER tool.