

Heavy Quark Monte Carlo generation in ALICE

Andrea Dainese - University of Padova

Nicola Carrer - CERN

MC for the LHC Workshop - July 9, 2003 Andrea Dainese

Outline

- Which baseline for ALICE HVQ simulations?
- Charm and Beauty cross sections at NLO

Extrapolation to Pb-Pb

HVQ in PYTHIA: comparison with NLO & tuning

Pb-Pb & pp

Fragmentation model

- HVQ in HERWIG
- A PDF feature: limited extension at low x
- Conclusions

- pQCD to describe HVQ production in nucleon-nucleon collisions
- Include in the baseline only well established nuclear effects
 - Nuclear shadowing
 - Intrinsic k_t
- Keep into account ALICE acceptance
 - Sensitivity to low p_t!

- Exact at NLO
- Does not diverge as $p_t \rightarrow 0$
- Large dependence on choice of scale (especially at low p_t)
- Not an event generator

Parton shower models (PYTHIA, HERWIG)

- Not exact at NLO
 - Take into account multiple gluon radiation
- Divergences at $p_t \rightarrow 0$
- Implemented as event generators
- Many parameters

Baseline definition

Reference rates and spectra from NLO calculation

- "reasonable" values for masses and scales
- average of results with different PDF sets
- EKS98 for shadowing effect
- "reasonable" values for intrinsic k_t broadening
- extrapolation to pA and AA using Glauber model
- Event generation using PS generator (PYTHIA) tuned to match NLO pQCD results for Q single-inclusive p_t distributions

Nuclear effects

- Shadowing (EKS98):
 - AA: reduction of 35% for charm and 20% for beauty
 - PA: reduction of 80% for charm and 10% for beauty
 - effect localized in p_t < 4-5 GeV/c</p>

HVQ Yields and Spectra

system centrality $\sqrt{s_{NN}}$	Charm			Beauty		
	pp minbias 14 TeV	p–Pb minbias 8.8 TeV	Pb–Pb centr. (5%) 5.5 TeV	pp minbias 14 TeV	p–Pb minbias 8.8 TeV	Pb–Pb centr. (5%) 5.5 TeV
NQQ/ev	0.16	0.78	115	0.0072	0.029	4.56
C_{shad}	1	0.80	0.65	1	0.90	0.84

Heavy Quarks in Parton Shower Event Generators: PYTHIA HERWIG

MC for the LHC Workshop - July 9, 2003

Andrea Dainese

- Hard scattering: LO graph
- Processes classified w.r.t. # HVQs in hard scattering final state
- No double counting because hard scattering is the process with largest virtuality

Comparison at the bare quark level

Heavy Quarks in PYTHIA:

- MSEL = $4/5 \rightarrow \underline{\text{Leading Order}}$ processes
 - settings corresponding to MNR
 - good agreement with MNR LO
- MSEL = 1 → initial and final state <u>Parton Shower</u> processes describe contributions above LO
 - agreement with MNR NLO less good
 - parton shower processes \neq NLO processes
 - massless Matrix Elements! cross section diverges at $p_t^{hard} \rightarrow 0$
 - Tuning of parameters less "physics inspired"
 - Main parameter tuned: min. p_t^{hard} (2.1 GeV/c for c, 2.75 GeV/c for b)

- Use default parameters
- Lund string fragmentation model
 - Iongitudinal fragmentation:
 - Lund symmetric fragmentation function
 - Modified to account for harder spectra in HVQ fragmentation
 - transverse momentum pick-up

 $> \sigma(p_x) = \sigma(p_y) = 230 \text{ MeV/c}$

Simple LO graph, no shower

Andrea Dainese

Average p_t-reduction:
 25% for charm
 15% for beauty

- As in PYTHIA: pair creation, flavour excitation, gluon splitting
- Pair creation AND <u>flavour excitation use massive Matrix</u> <u>Element</u>
- Kinematis for FE as if PC:

• $1 + 2 \rightarrow a + b$ $m_1 = m_2 = 0$, $m_a = m_b = m_Q$

MNR vs. HERWIG: LO

MC for the LHC Workshop - July 9, 2003

Andrea Dainese

 $\sqrt{s} = 5.5 \, {
m rev} \,, \, y_{cc} > 4.5 \, \rightarrow \, x_1 < 10^{-5} \,, x_2 > 0.0035$ $\sqrt{s} = 14 \, {
m TeV} \,, \, y_{c\overline{c}} > 3.4 \, \rightarrow \, x_1 < 10^{-5} \,, x_2 > 0.0082$

CTEQ6: calculated x > 10⁻⁶, extrapolated below

- Baseline for ALICE HVQ simulations:
 - rates from NLO calculations (MNR)
 - generation with PYTHIA, tuned to reproduce
 p_t spectra given by NLO pQCD
- Determined parameters for generation with PYTHIA (Pb-Pb, p-Pb & pp)
- (PYTHIA) Fragmentation only affects p_t spectra
- HERWIG gives wrong results for flavour excitation