PDF's: Current status and issues

```
PDF's with uncertainties (Tuesday, 15:00 -17:00, TH-Auditorium)
Where are we standing?
What still needs to be done?

PDF's and the LHC (Wednesday, 14:30-17:00, TH-Auditorium)
Predictions for the LHC
LHC measurements impact on PDF's

PDF library interface (Thursday, 10:00-12:00, TH-Auditorium)
LHAPDF evolution towards a standard tool
PDFLIB compatibility
```

• Heavy flavor PDF's at the LHC (Friday, 10:00-12:00, TH-Auditorium)

Can we neglect mass effects of initial state quarks?

To what accuracy do we need to know them?

PDF's with uncertainties

- Tuesday, 15:00-17:00, TH-Auditorium
 - "The Gaussian approach to PDF's with uncertainties", Sergey Alekhin
 - "The Monte Carlo approach to PDF's with uncertainties", Walter Giele
 - "The Neural Network approach to PDF's with uncertainties", Stefano Forte
- The field of PDF determination has undergone a dramatic change with the introduction of PDF uncertainties.
 - This development is driven by the ever increasing accuracy of the experiments.
 - The two major "global fit" groups (CTEQ and MRST) now have released fits which include uncertainties
 - Other, independent fits which include uncertainties exist.
- While this session is more theoretical in nature, it is important for phenomenology
 - What does the uncertainty cover?
 - What are the hidden assumptions in the PDF determination?
- The crucial question is: How "believable" are the uncertainties?
 - Does a five sigma deviation from (N)NLO theory for e.g. the di-jet mass spectrum denote new physics?
 - Or does this mean a "retuning" of the PDF's?

PDF's with uncertainties

- The old style "best global fit" PDF:
 - An error weighted average of the experimental results
 - The details of the experimental uncertainties only of secondary importance
 - The only requirement was that it gave a reasonable description of the global ensemble of experiments.
- How to proceed to PDF's with uncertainties?
 - Consider all PDF sets
 - For each of these PDF sets calculate the likelyhood it describes the experimental data
 - Now each PDF set has a probability associated with it. We have a probability density in "PDF space"!
 - We can now make predictions as each possible PDF set has an associated uncertainty, building up a probability density for the observable
- This would be a straightforward if:
 - We know the functional description of PDF's, i.e. PDF sets are described by a set of parameters.
 - However, we do not know this. In fact a PDF set has infinite number of degrees of freedom.
 - This means "all PDF sets" needs to be further specified. We need to specify a prior density in "PDF space" which is solely driven by theory assumptions on preferred functional behavior of PDF's

PDF predictions for the LHC

- Wednesday, 14:30-17:00, TH-Auditorium
 - "PDF uncertainties in Higgs production at hadron colliders", Samir Ferrag
 - "Impact of the PDF uncertainties on the sensitivity to Extra-dimension at the LHC", Samir Ferrag
 - "Quantitative impact of LHC measurements on PDF determination", Sergey Alekhin
- Given the PDF sets with uncertainties we can look at many LHC cross sections:
 - The existence of PDF uncertainties give more texture to the phenomenology
 - We can see to what extend PDF uncertainties will limit physics goals
 - PDF induced correlations between different observables
 - Given the correlations, how to use a measurement in the PDF fit in order to reduce the PDF uncertainty in another observable
 - Do we need a flexible fitting tool?
 - E.g. Assume I find that the W-mass PDF uncertainty can be further reduced by including the W and Z rapidity distribution in the PDF fit
 - Should I wait until this is done by MRST in their next release?
 - Or should we develop tools to perform such enhancements to existing fits?

Impact of LHC measurements on PDF's

- We can even go further by using the LHC measurements in PDF fits
 - A hadron collider has access to all PDF's at large momentum transfer scales
 - One can do this solely based on the LHC or include other experiments
- The principle of such a procedure is simple:
 - Jet cross sections couple to the parton color and will separate gluons (G) from the quarks (Q)
 - Vector boson cross sections couple to the quark EW quantum numbers. So, it will separate the quark (Q) into up-type quarks (U) and down type quarks (D)
 - To further separate U and D we can use heavy flavor tagging:
 - Z/photon+charm gives charm PDF: $D \rightarrow (d,c)$
 - W+charm gives strange PDF, Z/photon+bottom gives bottom PDF: $U \rightarrow (u,s,b)$
- Note that in PDF's using LHC data, the PDF uncertainties become correlated with the experimental uncertainties
 - This complicates the analysis as these correlations need to be accounted for
 - However, it will also reduce PDF uncertainties for the physics objectives
- To what extend such a program (or limited version) would work requires some study. The PDF sets with uncertainties form a good starting point for such a study.

PDF library interface for Monte Carlo Programs

- Thursday, 15:00-17:00, TH-Auditorium
 - "The LHAPDF interface: current status and future", Mike Whalley
- If one want to use the PDF sets with uncertainties to make predictions, they need to be integrated in the Monte Carlo programs:
 - A PDF fit becomes a set of individual PDF's
 - Gaussian:
 - → Choose a parameterization
 - \rightarrow Assume Gaussian uncertainty in the parameters
 - → We can characterize the entire probability density by 1+#parameters(*2) PDF sets
 - Random Sampling:
 - → Choose a parameterization
 - → Draw "random" unit weight PDF's from the probability density in PDF parameter space
 - → Number of PDF's used in set determines the accuracy of the PDF uncertainty
 - Characteristic is that a fit consist of a number of PDF's
 - This would be very inconvenient within PDFLIB
 - The LHAPDF interface was designed for the PDF sets with uncertainties
 - Currently a FORTRAN implementation of this interface is available. It gives a uniform interface to the error PDF's of CTEQ, MRST, and others

The LHAPDF interface

- At the core of the interface are 3 subroutine calls:
 - call InitPDFset(name)
 - This sets up the PDF set. The name is the path to an external file which defines the PDF set.
 - call InitPDF(mem)
 - This call selects an individual member of the defined set. The 0 entry always refers to the best fit.
 - \bullet call evolvePDF(x,Q,f)
 - This returns the values of the PDF in array f at parton fraction x and scale Q
- Apart from some cosmetic changes there are a few larger issues which came up:
 - Compatibility with PDFLIB is desirable
 - LHAPDF within the PDFLIB interface
 - PDFLIB within the LHAPDF interface
 - Evolution code issues
 - Different fits were done with different evolution codes. Even up to this date not all NLO evolution codes give the same answer.
 - Keeping member PDF members in memory for quick re-initialization
 - In Monte Carlo's one often want to loop over the PDF's for each generated event (instead of the reverse)
 - Only the zero-mass variable-flavor-number scheme implemented

Heavy flavor PDF's at the LHC

- Friday, 10:00-12:00, TH-Auditorium
 - "Heavy quark structure functions", Kajaru Mazumdar
- Initial state heavy flavors are important at the LHC. To what extend they are an issue has to be investigated:
 - In principle Q>>m and the commonly used zero-mass variable-flavor-scheme is applicable
 - The heavy flavors "turn on" at some scale Q0 close to m. (That is, it is zero below this scale and generated through evolution above the scale)
 - This would make adding in heavy flavors uncomplicated. Use the TEVATRON experiments (also Q>>m) to determine the two scales Q0.
 - Possible complications:
 - The condition Q>>m depends on precision of measurement and observable under consideration. The approximation uncertainty is of order $(m/Q)^2$
 - Removing the approximation would require implementation of a non-zero mass variable-flavor-scheme. Depending on the scheme the matrix element calculations would need to be modified to the correct variable-flavor-scheme
 - There might be some intrinsic structure at Q0 which the simple turn-on procedure cannot describe

Potential Workshop goals

- Comparisons between different error PDF sets for some key LHC experiments
 - Do the different sets give overlapping predictions?
 - If not, what is the reason?
 - Prior (or parameterization) too restrictive?
 - Treatment of theory for input experiments?
- What LHC measurements can constrain the PDF's such that it has an impact on other physics measurements at the LHC. For example:
 - Reducing the PDF uncertainty on the W-mass, Top quark cross section, Higgs cross section.....
 - Need for a fitting tool? How could that look?
- Next evolutionary step for LHAPDF code
 - Building in/addressing the user requests
 - Memory storage of PDF set members
 - Legacy issues with PDFLIB
 - Implementation of variety of evolution codes
 - Clear support agreements
 - How to add a new PDF set
 - Who will take care of the code
 - Distribution web site