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Outline
• EvtGen overview decay algorithm
• Content of evt.pdl
• Available decay models
• Decay table structure
• How to add new decay models
• Getting started with EvtGen
• B mesons from hadronic interactions 
• Data MC tuning
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Overview and decay algorithm
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Sequencial decays 
• Many B meson decays have interesting sequencial

decay chains: 

• Want to correctly simulate these decay chains while 
only implementing the nodes in the decay tree.
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CP violating decays

• B J/ψK*0 (K*0 Ksπ0)
– Angular correlations 

and time dependence
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EvtGen decay algorithm 

1. Input: Parent particle Id and p4

• Configuration specified by input files at run time.  

Input from
DECAY.DEC2. Determine decay tree (completely)

Input from
evt.pdl

3. Determine mass of each particle in tree

4. Accept/reject to determine kinematics
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Resonance decay modes and branching fractions 
are specified in DECAY.DEC input file

• If particle is not listed in DECAY.DEC, it is assumed to 
be stable.

• Given parent particle:
– Select decay mode based on allowed decay modes 

for specified particle (and its mass).
• Do not yet determine daughter masses

– Continue down the decay chain until all particles left 
over are stable.

• Some sanity checks on kinematically allowed 
decay sequences is included.  Given broad 
resonaces, it is in principle possible to generate 
sequences with no allowed set of particle masses. 
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After the full decay chain is determined, the mass 
of each particle is determined

• Input from evt.pdl:
– Nominal mass and width
– Low mass cutoff (if any)
– If no cutoff specified, allowed range of masses          

is +/-15Γ
• Lineshapes are nominally relativistic Breit-Wigners.

– However there are exceptions:
• Decays to more than two daughters
• Particles produced by Pythia (inclusive decays)

– Where possible, birth and decay vertex factors are 
included (ie B ρπ, ρ ππ)

– More accurate lineshapes, but algorithm for lineshape
depends on parent and daughter particles.
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Finally, the decay kinematics are determined
• We fix the decay chain and particle masses before 

determining the kinematics
– One exception is for inclusive decays from Pythia, 

where the daughters are determined in same step as 
kinematics.

– We avoid needing to normalize decay models 
properly for their mass dependence.

– This procedure not always ideal. 
• Alternative is to include resonant substructure with 

decay probability calculation.  
– One implemented example: Dalitz decays 

» D Kππ0 instead of D K*π0, etc
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Decay amplitudes are used instead of probabilities

• EvtGen works with amplitudes to correctly handle 
sequential decays:

• Nodes in the decay tree are implemented as “models”. 
The framework of EvtGen handles the bookkeeping 
needed to correctly generate the full decay tree.
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Selection algorithm (I)
• Generate the B D*τν decay

• Compare with maximum probability and accept or reject 
generated B D*τν decay.
– Maximum probability specified in code.

• Can instead be generated on the fly, however this 
leads to the output of event N depending on the 
random number sequence used to determine the 
max probability.

• Regenerate B D*τν decay until combination is 
accepted.
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Selection algorithm (II)
• Average over t spin and calculate the D* spin density 

matrix:

• Generate the D* Dπ decay

• Compare with maximum probability and accept or reject 
generated D* Dπ decay

• Regenerate D* Dπ decay until accepted.  The 
B D*τν decay is not regenerated.
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Selection algorithm (III)
• Calculate the spin density matrix for the τ

• Where:

• Generate the τ πν decay

• Compare with maximum probability and accept or reject generated 
τ πν decay.

• Regenerate τ πν decay until accepted.  The B D*lν and D* Dπ
decays are not regenerated.
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Advantages to using decay amplitudes 
• Implementation of decay models is simplified by using 

amplitudes instead of probabilities.
• Keeping track of the spin density matrices allows us to 

generate each node of the decay chain independently.
– More efficient
– Avoids the need to determine uncountable # of 

maximum probabilities
• Generalizes to arbitrarily long decay chains
• Calculation of probabilities and spin density matrices are 

done by the framework.  Models specify only the decay 
amplitudes.
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End of overview and algorithm



16

evt.pdl and particle properties
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evt.pdl format

Particle properties are defined in evt.pdl:

Add p Lepton mu- 13   0.1056584 0       0    -3 1 658654. 13
Add p Lepton mu+ -13  0.1056584 0       0     3 1 658654. 0
Add p Meson pi+   211  0.139570  0        0     3 0  7804.5 101
Add p Meson pi- -211  0.138570  0        0    -3 0  7804.5 0
Add p Meson rho+ 213 0.7685       0.151 0.4  3 2         0   121
Add p Meson rho- -213 0.7685       0.151 0.4 -3 2         0   0
…..
• 4th column=particle name, 5th=stdhep number, 6th=mass 

(GeV/c2), 7th=Width (GeV/c2), 8th=Mass cutoff, 
9th=3*charge, 10th 2*spin, 11th=ct (mm), 12th Lund-KC 
number (for Pythia interface)
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Meaning of “Mass cutoff”
• Given decays of broad resonances to other broad 

resonances, we find that we must cut off the mass 
distribution of particles to improve the robustness of our 
code.

• Nominal mass range:
m0-15Γ < m < m0+15Γ

• If the mass cutoff in evt.pdl is not 0:
m0-Field#8 < m < m0+15Γ

• (Of course parent,daughter particle masses can also 
limit the mass range)
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Notes on evt.pdl
• Interface adopted is from BABAR standard, based on 

MC++ (we think..)

• Quantum numbers such as C, P not included.  Would in 
principle allow models to determine some of the 
information currently passed in as arguments in 
DECAY.DEC.
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Implemented models in EvtGen

Many different models are implemented in EvtGen. They 
vary from highly specialized to rather generic. A rough 
grouping of these models into categories would be:

Semileptonic decays
CP violation
Generic amplitudes
Special matrix elements



21

Semileptonic decays

HQET - Heavy Quark Effective Theory inspired form factor 
param.
ISGW, ISGW2 - Quark model based prediction, Isgur, 
Scora et al.
MELIKHOV - Quark model based prediction
SLPOLE - Generic spcification of form factors based on a 
lattice inspired parametrization.
VUB - For generic b->ulnu decays, uses JetSet for 
fragmentation.
GOITY_ROBERTS - Decays to non resonant D(*)pi lnu. 

BABAR uses, HQET, ISGW2, VUB, and GOITY_ROBERTS 
in its simulation. 
ISGW2 should support D, D_s and B_s decays as well as B 
decays.
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CP violation in B decays

SSD_CP - generic model for two-body decays that are 
common final states of the B0 and the anti-B0. Includes 
effects of both the mass and width differences and 
should apply equally well to the B_s system.
SVV_CPLH - Model for decays with two vectors in the 
final state, e.g. B_s -> J/psi phi.
BTO3PI_CP, BTO4PI_CP, BTO2PI_CP_ISO, 
BTOKPI_CP_ISO specialized models.
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Generic amplitudes

HELAMP, PARTWAVE - generic two-body decays 
specified by the helicity or partial wave amplitudes.
SLN - Decay of scalar to lepton and neutrino.
PHSP - N-body phase space.
SVS, STS - Scalar decay to vector (or tensor) and scalar.
VSS, TSS - decay of vector or tensor particle to a pair of 

scalars.
VLL, SLL - Decay of vector or scalar to two leptons.
VSP_PWAVE, vector to scalar and photon, e.g.,          

D*->Dgamma
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Special matrix elements

BTOXSGAMMA - b->X_s gamma with JetSet fragmentation.
BTOXSLL - b->X_sll with JetSet fragmentation.
D_DALITZ - 3-body D-decays with substructure.
ETA_DALITZ - eta to 3pions with measured dalitz amplitude.
KSTARNUNU - B->K*nunubar
LNUGAMMA - B->lnu gamma
OMEGA_DALITZ - Dalitz structure in the omega->3-pion decay
PHI_DALITZ - Dalitz structure in the phi->3-pion decay
PTO3P - scalar to 3 scalars decay where you can specify                

intermediate resonances
TAUHADNU - hadronic 1, 2, and 3 pion final states.
TAULNUNU - leptonic tau decays.
VSS_BMIX - Upsilon(4S) to BBbar, including mixing.
VVPIPI - decay of vector to vector and two pions, e.g.           

psi'->psi+pi+pi.
VECTORISR - ISR production of vector mesons:                   

e+e- -> V+gamma
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DECAY.DEC and writing new decay files
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Generic decay file layout

Define global parameters
Jetset/Pythia control parameters (any needed changes 

from the default settings)
…..
Define decays for Particle_1
Define decays for Particle_2
….
….
Define decays for Particle_N
End

Lines starting with “#” are comments
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Parameter definitions
• Use “Define” to define a keyword that can be used 

elsewhere in the decay file:

Define alpha 1.365
Define beta 0.39
Define dm 0.489e12

• In principle these parameters can appear anywhere in 
the decay file.
– If multiply defined, second definition takes 

precedence only after it has been defined
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Multiple parameter definitions

Define minus2Beta -0.78
Decay B0

1. J/psi K_S0 SSD_CP dm 0. 1. minus2Beta 1. 0. -1. 0.
Enddecay

Define minus2Beta -0.72
Decay B0

1. J/psi K_L0 SSD_CP dm 0. -1. minus2Beta 1. 0. -1. 0.
Enddecay

Will give J/psi K_S0 decays with 2β=0.78 and J/psi K_L0 
decays with 2β=0.72.
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Pythia parameters
• For parameters not specified in the decay table, the 

default from Pythia is used.

• JetSetPar PARJ(54)=-0.040
• JetSetPar MSTJ(107)=1

• Note: no spaces allowed between parameter name, “=“, 
and its value.
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PHOTOS control
• PHOTOS can be enabled for all decays, disabled for all 

decays, or controlled for individual decays.  Add one of 
the following keywords to control:

• yesPhotos
– Turns on PHOTOS for all decays

• noPhotos
– Turns off PHOTOS for all decays

• normalPhotos
– PHOTOS controlled on a decay by decay basis (to be 

explained in a few slides.)
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Defining particle decays

Decay D*+
0.683 D0   pi+        VSS;
0.306 D+   pi0        VSS;
0.011 D+   gamma VSP_PWAVE;

Enddecay

Defines three decay modes of the D*+
Branching fractions will be rescaled to sum to 1.0

Particle to decay

Decay model
Branching
fraction

Daughters

End of decay stanza
“;” to end each 
mode definition
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Another example of defining decay modes

Decay anti-B0
0.056 D*- e+  nu_e PHOTOS HQET 0.92 1.18 0.72;
0.021 D- e+  nu_e PHOTOS ISGW2;

Enddecay

In general each line in the decay file contains:
<BF> <Daughter1> … <DaughterN> <PHOTOS> 

<Model_to_use> <Model_arguments>;

<PHOTOS> is optional. <Model_arguments> needed as 
required by specified model. 

Turn on PHOTOS for this decay
(unless otherwise controlled)

Decay model
arguments
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How to define a particle as stable

Decay D*+
Enddecay

means that the D*+ will be not be decayed by EvtGen. 
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Charge conjugates

CDecay tau+ 

will define the decays of the tau- to be the charge 
conjugates of those defined for its charge conjugate 
(tau-).  

• Note: if the tau- decay is later redefined, the tau+ 
decay modes will not automatically be updated.

• All model arguments will be the same.
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“User” decay files
• One or more additional decay files can be read in to 

override the definitions in DECAY.DEC.
– Format and available features identical to that of 

DECAY.DEC
– Users in BABAR use this feature to define “signal”

Monte Carlo requests for their analysis.

• There are a few features of our decay table format that 
are most commonly used for these decay files.
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Particle “aliases”

Alias MyD*+ D*+

Decay B0
1.0 MyD*+ pi- SVS;

Enddecay

Decay MyD*+
1.0 D0 pi+   VSS;

Enddecay

• In this case, all B0s will decay to D*+ pi-, with D*+ D0 
pi+.  However, other D*+ in the event will decay as 
defined in DECAY.DEC.
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Charge conjugates for aliased particles
• Often the charge conjugate of an aliased particle will 

need to be specified.  
– For particles defined in evt.pdl, charge conjugate 

particle determined from stdhep number

– For aliases, the charge conjugate must be another 
alias.

ChargeConj myB+ myB-
– The charge conjugate must be defined for a new 

models (SSD_CP) and to use the CDecay
functionality.
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Example of user decay file
Define dgog 0.
Define magqop 1.
Define twobeta -0.92
Define gamma 1.2

Alias MyB0 B0

Decay Upsilon(4S)
1.0 anti-B0 MyB0 VSS:
Enddecay

Decay MyB0
1.0 pi+ D*- SSD_CP dm dgog magqop twobeta 1. 0. 0.3 gamma;

Enddecay

End

dm as defined in 
DECAY.DEC



39

Control of line shape parameters
• The mass and width can be controlled in the decay table:

Particle rho0 0.779
or

Particle rho0 0.779 0.160
if no width is specified, the default is kept.

Also the minimum and maximum allowed masses are 
controled using
ChangeMassMax <particle_name> <min_mass>
ChangeMassMin <particle_name> <max_mass>
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Writing new decay models
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Writing new Physics Models

This part of the tutorial deals with writing new models
A model is a C++ class that implements the calculation 
of amplitudes for a given process.
This class has to be registered with the frame work in 
order to be used.
The model has a name which is used to indentify the 
model in the decay table.

There are currently about 80 decay models 
implemented in EvtGen.
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Some coding history...

EvtGen was originally started at CLEO
Most development done at BABAR

BABAR has just recently adopted STL
EvtGen has started to use STL, but there are still a lot of 
code that is using bare arrays etc. (BABAR used RW 
tools.h++, but it was never introduced to EvtGen.)
BABAR is soon to adopt standard iostreams. In the public 
version of EvtGen we have removed the classic iostreams 
with a script. (We still rely on strstream which is not part of 
the C++ standard, but supported in g++.)
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States in EvtGen

EvtGen works with amplitudes. The amplitudes are specified as 
amplitudes between the initial and final state in a set of basis vector 
provided by EvtGen.
EvtGen uses the following representation for the lower spin states:

Also J=3/2 EvtRaritaSchwinger 4 states
Higher spin states are represented by a generic helicity state basis
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EvtGen support classes for states

EvtGen provides implementations of several classes that 
are used to represent the states:
EvtComplex - implementation of complex numbers
EvtVector3R, EvtVector3C - real and complex 3-vectors
EvtVector4R, EvtVector4C - real and complex 4-vectors
EvtTensor3C, EvtTensor4C - complex second rank tensors
EvtDiracSpinor - 4-component Dirac spinor
EvtRaritaSchwinger - Rarita-Schwinger spinor (for spin 3/2 
particles)
EvtGammaMatrix - Dirac gamma matrix implementations
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Example decay: V SS

To illustrate how a decay model is written we will use the 
example of the decay of a vector particle to two scalars. The 
amplitude for this decay is given simply by:

A=εµ vµ
Where e  is the polarization vector of the initial vector meson 
and v is the four-velocity of one of the final state particles.

We will illustrate how we write the class, EvtVSS, to 
implement the calculation  of this amplitude for a model 
named 'VSS'.
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The EvtDecayBase class
#ifndef EVTDECAYBASE_HH
#define EVTDECAYBASE_HH

#include "EvtGenBase/EvtPatches.hh"
#include "EvtGenBase/EvtId.hh"
#include <string>
#include "EvtGenBase/EvtSpinType.hh"
#include <stdlib.h>
#include <vector>
class EvtParticle;
class EvtSpinType;

class EvtDecayBase{
public:

//These pure virtual methods has to be implemented
//by any derived class
virtual void getName(std::string& name)=0;
virtual void decay(EvtParticle *p)=0;
virtual void makeDecay(EvtParticle *p)=0;
virtual EvtDecayBase* clone()=0;

//These virtual methods can be implemented by the 
//derived class to implement nontrivial functionality.
virtual void init();
virtual void initProbMax();
virtual std::string commandName();
virtual void command(std::string cmd);

...

};

#endif
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EvtVSS.hh (simplified)

#ifndef EVTVSS_HH
#define EVTVSS_HH

#include "EvtGenBase/EvtDecayAmp.hh"

class EvtParticle;

class EvtVSS:public  EvtDecayAmp  {

public:
EvtVSS() {}
virtual ~EvtVSS();

void getName(std::string& name);
EvtDecayBase* clone();

void decay(EvtParticle *p); 
void init();
void initProbMax();

};
#endif
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EvtVSS.cc  
void EvtVSS::init(){

// check that there are 0 arguments
checkNArg(0);

// check that there are 2 daughters
checkNDaug(2);

// check the parent and daughter spins
checkSpinParent(EvtSpinType::VECTOR);
checkSpinDaughter(0,EvtSpinType::SCALAR);
checkSpinDaughter(1,EvtSpinType::SCALAR);

}

void EvtVSS::decay( EvtParticle *p){

p->initializePhaseSpace(getNDaug(),getDaugs());

EvtVector4R pdaug = p->getDaug(0)->getP4();

double norm=1.0/pdaug.d3mag();
vertex(0,norm*pdaug*(p->eps(0)));
vertex(1,norm*pdaug*(p->eps(1)));
vertex(2,norm*pdaug*(p->eps(2)));

return;
}

#include <stdlib.h>
#include "EvtGenBase/EvtParticle.hh"
#include "EvtGenBase/EvtGenKine.hh"
#include "EvtGenBase/EvtPDL.hh"
#include "EvtGenBase/EvtVector4C.hh"
#include "EvtGenBase/EvtVector4R.hh"
#include "EvtGenBase/EvtReport.hh"
#include "EvtGenModels/EvtVSS.hh"
#include <string>

EvtVSS::~EvtVSS() {}

void EvtVSS::getName(std::string& model_name){
model_name="VSS"; 

}

EvtDecayBase* EvtVSS::clone(){
return new EvtVSS;

}

void EvtVSS::initProbMax() {
setProbMax(1.0);

}      
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Registering the model

The last step to do before you can use a model is to 
register it with the EvtGen framework. This is done in the 
EvtModelReg.cc:

modelist.Register(new EvtVSS);

For each instance of a decay in the decay table that uses 
the VSS model
a new instance of the EvtVSS class is created using the 
clone method.
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Model arguments

Some models takes arguments:

Decay B0
1.00 D*- e+   nu_e           PHOTOS HQET 0.92 1.18 0.72;
Enddecay

These arguments can be accessed in the model using the 
methods:

getNArg() returns the number of arguments
getArg(i) returns the ith argument

HQET parameters
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Decay models
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Interfacing to EvtGen
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Basic EvtGen interface (EvtGen.cc)
EvtGen myGenerator(

<DECAY.DEC location>,
<evt.pdl location>
<randomNumberEngine>.
<FSR generator>);

myGenerator.readUDecay(<user decay file>);
EvtParticle *myParentParticle;
….. (Set up parent particle properties)….

myGenerator.generateEvent(myParentParticle,t_init);

Optional: PHOTOS 
is default.
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Setting up random number generator
• Simple interface to use your favorite random number 

engine:
class EvtCLHEPRandomEngine: public 

EvtRandomEngine {
public: 
double random();

};

double EvtCLHEPRandomEngine::random() {
static HepJamesRandom randengine;
return randengine.flat();

}
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Initializing parent particle
//Find the particle whose name is “B0”
static EvtId B0=EvtPDL::getId(std::string(“B0”));

//The B0 is at rest
EvtVector4R p_init(EvtPDL::getMass(B0),0.,0.,0.);

//Then create a particle from this 4-vector
EvtParticle *myParentParticle;
myParentParticle=

EvtParticleFactory::particleFactory(B0,p_init);
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Examples
• EvtGen/testEvtGen.cc is an example of code that 

interfaces to EvtGen.  
– It is very long only because it has lots of examples.
– See EvtGen/test/do_tests for examples of how these 

run.  Root scripts exist to make plots from some of 
these examples.

– (Documentation very much lacking on this point…ask 
us for specific info, desired examples)

– testEvtGen.cc also shows how to override the random 
# generators in PHOTOS and Pythia.
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Topics in Bs from hadronic interactions
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B_s Mixing
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Data vs MC tuning
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Data vs MC tuning
• General philosophy on decay table branching fractions:

– Try to use PDG (or new individual measurements) 
where possible for exclusive branching fractions.

– Need to decay all (B) mesons, so significant 
“interpretation” needed for inclusive BFs.

• Projections from theory / isospin / other constraints 
wrt measurements.

• Educated and/or wild guesses
• Numbers in the decay table are definitely open to 

discussion.  We hope that we can all agree on the 
best approach.

– (MC users will do what they wish anyway…)
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Comparisons
• Yesterday showed EvtGen results on π/K/p/π0 spectra 

as well as production of various resonances relative to 
data.
– Would appreciate feedback on other resonances / 

measurements that we should pay special attention to 
in our MC tuning process.
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Pythia tuning
• The “inclusive” component of the decay table decayed 

by Pythia is the primary handle that we have used to 
improve the data-MC agreement.

• Internal data on eta, eta’,omega, and phi resonance 
production in B decays used during last round of MC 
tuning.  Adjustments of up to 40%.

• No real attempts to tune momentum sprecta yet, except 
for leptons (Fully exclusive decay modes). 
– B DsX study in Belle is an example of what the next 

step must be.
– Need to push to get the data for these studies.
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Pythia parameters that we have changed

Cut off parameter to stop frag. process0.3 PARJ(33)
Turn on D** production0.05PARJ(14-17)

Phi production0.4PARJ(11)
Phi production0.2PARJ(12)
Eta production1.0PARJ(25)
Eta’ production0.15PARJ(26)
D* production tuning (0.6 preferred for ee qq)0.45PARJ(13)
Turn off BB mixing in Pythia0MSTJ(26)
Same-0.004PARJ(55)
Same-0.04PARJ(54)
Same0.90PARJ(44)
Same0.50PARJ(43)
Same0.58PARJ(42)
Fragmentation parameters0.3PARJ(41)
Lund fragmentation function4MSTJ(11)
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• Do any of these affect the fragmentation step? 
• Should we worry about EvtGen vs. other generator 

interference?
• Tuning done in very ad hoc fashion.  Most handles 

are indirectly related to the quantities that we 
measure.
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