
1

EvtGen tutorial intro
David Lange

Lawrence Livermore Laboratory
Anders Ryd

California Institute of Technology

2

Outline
• EvtGen overview decay algorithm
• Content of evt.pdl
• Available decay models
• Decay table structure
• How to add new decay models
• Getting started with EvtGen
• B mesons from hadronic interactions
• Data MC tuning

3

Overview and decay algorithm

4

Sequencial decays
• Many B meson decays have interesting sequencial

decay chains:

• Want to correctly simulate these decay chains while
only implementing the nodes in the decay tree.

5

CP violating decays

• B J/ψK*0 (K*0 Ksπ0)
– Angular correlations

and time dependence

6

EvtGen decay algorithm

1. Input: Parent particle Id and p4

• Configuration specified by input files at run time.

Input from
DECAY.DEC2. Determine decay tree (completely)

Input from
evt.pdl

3. Determine mass of each particle in tree

4. Accept/reject to determine kinematics

7

Resonance decay modes and branching fractions
are specified in DECAY.DEC input file

• If particle is not listed in DECAY.DEC, it is assumed to
be stable.

• Given parent particle:
– Select decay mode based on allowed decay modes

for specified particle (and its mass).
• Do not yet determine daughter masses

– Continue down the decay chain until all particles left
over are stable.

• Some sanity checks on kinematically allowed
decay sequences is included. Given broad
resonaces, it is in principle possible to generate
sequences with no allowed set of particle masses.

8

After the full decay chain is determined, the mass
of each particle is determined

• Input from evt.pdl:
– Nominal mass and width
– Low mass cutoff (if any)
– If no cutoff specified, allowed range of masses

is +/-15Γ
• Lineshapes are nominally relativistic Breit-Wigners.

– However there are exceptions:
• Decays to more than two daughters
• Particles produced by Pythia (inclusive decays)

– Where possible, birth and decay vertex factors are
included (ie B ρπ, ρ ππ)

– More accurate lineshapes, but algorithm for lineshape
depends on parent and daughter particles.

9

Finally, the decay kinematics are determined
• We fix the decay chain and particle masses before

determining the kinematics
– One exception is for inclusive decays from Pythia,

where the daughters are determined in same step as
kinematics.

– We avoid needing to normalize decay models
properly for their mass dependence.

– This procedure not always ideal.
• Alternative is to include resonant substructure with

decay probability calculation.
– One implemented example: Dalitz decays

» D Kππ0 instead of D K*π0, etc

10

Decay amplitudes are used instead of probabilities

• EvtGen works with amplitudes to correctly handle
sequential decays:

• Nodes in the decay tree are implemented as “models”.
The framework of EvtGen handles the bookkeeping
needed to correctly generate the full decay tree.

11

Selection algorithm (I)
• Generate the B D*τν decay

• Compare with maximum probability and accept or reject
generated B D*τν decay.
– Maximum probability specified in code.

• Can instead be generated on the fly, however this
leads to the output of event N depending on the
random number sequence used to determine the
max probability.

• Regenerate B D*τν decay until combination is
accepted.

12

Selection algorithm (II)
• Average over t spin and calculate the D* spin density

matrix:

• Generate the D* Dπ decay

• Compare with maximum probability and accept or reject
generated D* Dπ decay

• Regenerate D* Dπ decay until accepted. The
B D*τν decay is not regenerated.

13

Selection algorithm (III)
• Calculate the spin density matrix for the τ

• Where:

• Generate the τ πν decay

• Compare with maximum probability and accept or reject generated
τ πν decay.

• Regenerate τ πν decay until accepted. The B D*lν and D* Dπ
decays are not regenerated.

14

Advantages to using decay amplitudes
• Implementation of decay models is simplified by using

amplitudes instead of probabilities.
• Keeping track of the spin density matrices allows us to

generate each node of the decay chain independently.
– More efficient
– Avoids the need to determine uncountable # of

maximum probabilities
• Generalizes to arbitrarily long decay chains
• Calculation of probabilities and spin density matrices are

done by the framework. Models specify only the decay
amplitudes.

15

End of overview and algorithm

16

evt.pdl and particle properties

17

evt.pdl format

Particle properties are defined in evt.pdl:

Add p Lepton mu- 13 0.1056584 0 0 -3 1 658654. 13
Add p Lepton mu+ -13 0.1056584 0 0 3 1 658654. 0
Add p Meson pi+ 211 0.139570 0 0 3 0 7804.5 101
Add p Meson pi- -211 0.138570 0 0 -3 0 7804.5 0
Add p Meson rho+ 213 0.7685 0.151 0.4 3 2 0 121
Add p Meson rho- -213 0.7685 0.151 0.4 -3 2 0 0
…..
• 4th column=particle name, 5th=stdhep number, 6th=mass

(GeV/c2), 7th=Width (GeV/c2), 8th=Mass cutoff,
9th=3*charge, 10th 2*spin, 11th=ct (mm), 12th Lund-KC
number (for Pythia interface)

18

Meaning of “Mass cutoff”
• Given decays of broad resonances to other broad

resonances, we find that we must cut off the mass
distribution of particles to improve the robustness of our
code.

• Nominal mass range:
m0-15Γ < m < m0+15Γ

• If the mass cutoff in evt.pdl is not 0:
m0-Field#8 < m < m0+15Γ

• (Of course parent,daughter particle masses can also
limit the mass range)

19

Notes on evt.pdl
• Interface adopted is from BABAR standard, based on

MC++ (we think..)

• Quantum numbers such as C, P not included. Would in
principle allow models to determine some of the
information currently passed in as arguments in
DECAY.DEC.

20

Implemented models in EvtGen

Many different models are implemented in EvtGen. They
vary from highly specialized to rather generic. A rough
grouping of these models into categories would be:

Semileptonic decays
CP violation
Generic amplitudes
Special matrix elements

21

Semileptonic decays

HQET - Heavy Quark Effective Theory inspired form factor
param.
ISGW, ISGW2 - Quark model based prediction, Isgur,
Scora et al.
MELIKHOV - Quark model based prediction
SLPOLE - Generic spcification of form factors based on a
lattice inspired parametrization.
VUB - For generic b->ulnu decays, uses JetSet for
fragmentation.
GOITY_ROBERTS - Decays to non resonant D(*)pi lnu.

BABAR uses, HQET, ISGW2, VUB, and GOITY_ROBERTS
in its simulation.
ISGW2 should support D, D_s and B_s decays as well as B
decays.

22

CP violation in B decays

SSD_CP - generic model for two-body decays that are
common final states of the B0 and the anti-B0. Includes
effects of both the mass and width differences and
should apply equally well to the B_s system.
SVV_CPLH - Model for decays with two vectors in the
final state, e.g. B_s -> J/psi phi.
BTO3PI_CP, BTO4PI_CP, BTO2PI_CP_ISO,
BTOKPI_CP_ISO specialized models.

23

Generic amplitudes

HELAMP, PARTWAVE - generic two-body decays
specified by the helicity or partial wave amplitudes.
SLN - Decay of scalar to lepton and neutrino.
PHSP - N-body phase space.
SVS, STS - Scalar decay to vector (or tensor) and scalar.
VSS, TSS - decay of vector or tensor particle to a pair of

scalars.
VLL, SLL - Decay of vector or scalar to two leptons.
VSP_PWAVE, vector to scalar and photon, e.g.,

D*->Dgamma

24

Special matrix elements

BTOXSGAMMA - b->X_s gamma with JetSet fragmentation.
BTOXSLL - b->X_sll with JetSet fragmentation.
D_DALITZ - 3-body D-decays with substructure.
ETA_DALITZ - eta to 3pions with measured dalitz amplitude.
KSTARNUNU - B->K*nunubar
LNUGAMMA - B->lnu gamma
OMEGA_DALITZ - Dalitz structure in the omega->3-pion decay
PHI_DALITZ - Dalitz structure in the phi->3-pion decay
PTO3P - scalar to 3 scalars decay where you can specify

intermediate resonances
TAUHADNU - hadronic 1, 2, and 3 pion final states.
TAULNUNU - leptonic tau decays.
VSS_BMIX - Upsilon(4S) to BBbar, including mixing.
VVPIPI - decay of vector to vector and two pions, e.g.

psi'->psi+pi+pi.
VECTORISR - ISR production of vector mesons:

e+e- -> V+gamma

25

DECAY.DEC and writing new decay files

26

Generic decay file layout

Define global parameters
Jetset/Pythia control parameters (any needed changes

from the default settings)
…..
Define decays for Particle_1
Define decays for Particle_2
….
….
Define decays for Particle_N
End

Lines starting with “#” are comments

27

Parameter definitions
• Use “Define” to define a keyword that can be used

elsewhere in the decay file:

Define alpha 1.365
Define beta 0.39
Define dm 0.489e12

• In principle these parameters can appear anywhere in
the decay file.
– If multiply defined, second definition takes

precedence only after it has been defined

28

Multiple parameter definitions

Define minus2Beta -0.78
Decay B0

1. J/psi K_S0 SSD_CP dm 0. 1. minus2Beta 1. 0. -1. 0.
Enddecay

Define minus2Beta -0.72
Decay B0

1. J/psi K_L0 SSD_CP dm 0. -1. minus2Beta 1. 0. -1. 0.
Enddecay

Will give J/psi K_S0 decays with 2β=0.78 and J/psi K_L0
decays with 2β=0.72.

29

Pythia parameters
• For parameters not specified in the decay table, the

default from Pythia is used.

• JetSetPar PARJ(54)=-0.040
• JetSetPar MSTJ(107)=1

• Note: no spaces allowed between parameter name, “=“,
and its value.

30

PHOTOS control
• PHOTOS can be enabled for all decays, disabled for all

decays, or controlled for individual decays. Add one of
the following keywords to control:

• yesPhotos
– Turns on PHOTOS for all decays

• noPhotos
– Turns off PHOTOS for all decays

• normalPhotos
– PHOTOS controlled on a decay by decay basis (to be

explained in a few slides.)

31

Defining particle decays

Decay D*+
0.683 D0 pi+ VSS;
0.306 D+ pi0 VSS;
0.011 D+ gamma VSP_PWAVE;

Enddecay

Defines three decay modes of the D*+
Branching fractions will be rescaled to sum to 1.0

Particle to decay

Decay model
Branching
fraction

Daughters

End of decay stanza
“;” to end each
mode definition

32

Another example of defining decay modes

Decay anti-B0
0.056 D*- e+ nu_e PHOTOS HQET 0.92 1.18 0.72;
0.021 D- e+ nu_e PHOTOS ISGW2;

Enddecay

In general each line in the decay file contains:
<BF> <Daughter1> … <DaughterN> <PHOTOS>

<Model_to_use> <Model_arguments>;

<PHOTOS> is optional. <Model_arguments> needed as
required by specified model.

Turn on PHOTOS for this decay
(unless otherwise controlled)

Decay model
arguments

33

How to define a particle as stable

Decay D*+
Enddecay

means that the D*+ will be not be decayed by EvtGen.

34

Charge conjugates

CDecay tau+

will define the decays of the tau- to be the charge
conjugates of those defined for its charge conjugate
(tau-).

• Note: if the tau- decay is later redefined, the tau+
decay modes will not automatically be updated.

• All model arguments will be the same.

35

“User” decay files
• One or more additional decay files can be read in to

override the definitions in DECAY.DEC.
– Format and available features identical to that of

DECAY.DEC
– Users in BABAR use this feature to define “signal”

Monte Carlo requests for their analysis.

• There are a few features of our decay table format that
are most commonly used for these decay files.

36

Particle “aliases”

Alias MyD*+ D*+

Decay B0
1.0 MyD*+ pi- SVS;

Enddecay

Decay MyD*+
1.0 D0 pi+ VSS;

Enddecay

• In this case, all B0s will decay to D*+ pi-, with D*+ D0
pi+. However, other D*+ in the event will decay as
defined in DECAY.DEC.

37

Charge conjugates for aliased particles
• Often the charge conjugate of an aliased particle will

need to be specified.
– For particles defined in evt.pdl, charge conjugate

particle determined from stdhep number

– For aliases, the charge conjugate must be another
alias.

ChargeConj myB+ myB-
– The charge conjugate must be defined for a new

models (SSD_CP) and to use the CDecay
functionality.

38

Example of user decay file
Define dgog 0.
Define magqop 1.
Define twobeta -0.92
Define gamma 1.2

Alias MyB0 B0

Decay Upsilon(4S)
1.0 anti-B0 MyB0 VSS:
Enddecay

Decay MyB0
1.0 pi+ D*- SSD_CP dm dgog magqop twobeta 1. 0. 0.3 gamma;

Enddecay

End

dm as defined in
DECAY.DEC

39

Control of line shape parameters
• The mass and width can be controlled in the decay table:

Particle rho0 0.779
or

Particle rho0 0.779 0.160
if no width is specified, the default is kept.

Also the minimum and maximum allowed masses are
controled using
ChangeMassMax <particle_name> <min_mass>
ChangeMassMin <particle_name> <max_mass>

40

Writing new decay models

41

Writing new Physics Models

This part of the tutorial deals with writing new models
A model is a C++ class that implements the calculation
of amplitudes for a given process.
This class has to be registered with the frame work in
order to be used.
The model has a name which is used to indentify the
model in the decay table.

There are currently about 80 decay models
implemented in EvtGen.

42

Some coding history...

EvtGen was originally started at CLEO
Most development done at BABAR

BABAR has just recently adopted STL
EvtGen has started to use STL, but there are still a lot of
code that is using bare arrays etc. (BABAR used RW
tools.h++, but it was never introduced to EvtGen.)
BABAR is soon to adopt standard iostreams. In the public
version of EvtGen we have removed the classic iostreams
with a script. (We still rely on strstream which is not part of
the C++ standard, but supported in g++.)

43

States in EvtGen

EvtGen works with amplitudes. The amplitudes are specified as
amplitudes between the initial and final state in a set of basis vector
provided by EvtGen.
EvtGen uses the following representation for the lower spin states:

Also J=3/2 EvtRaritaSchwinger 4 states
Higher spin states are represented by a generic helicity state basis

44

EvtGen support classes for states

EvtGen provides implementations of several classes that
are used to represent the states:
EvtComplex - implementation of complex numbers
EvtVector3R, EvtVector3C - real and complex 3-vectors
EvtVector4R, EvtVector4C - real and complex 4-vectors
EvtTensor3C, EvtTensor4C - complex second rank tensors
EvtDiracSpinor - 4-component Dirac spinor
EvtRaritaSchwinger - Rarita-Schwinger spinor (for spin 3/2
particles)
EvtGammaMatrix - Dirac gamma matrix implementations

45

Example decay: V SS

To illustrate how a decay model is written we will use the
example of the decay of a vector particle to two scalars. The
amplitude for this decay is given simply by:

A=εµ vµ
Where e is the polarization vector of the initial vector meson
and v is the four-velocity of one of the final state particles.

We will illustrate how we write the class, EvtVSS, to
implement the calculation of this amplitude for a model
named 'VSS'.

46

The EvtDecayBase class
#ifndef EVTDECAYBASE_HH
#define EVTDECAYBASE_HH

#include "EvtGenBase/EvtPatches.hh"
#include "EvtGenBase/EvtId.hh"
#include <string>
#include "EvtGenBase/EvtSpinType.hh"
#include <stdlib.h>
#include <vector>
class EvtParticle;
class EvtSpinType;

class EvtDecayBase{
public:

//These pure virtual methods has to be implemented
//by any derived class
virtual void getName(std::string& name)=0;
virtual void decay(EvtParticle *p)=0;
virtual void makeDecay(EvtParticle *p)=0;
virtual EvtDecayBase* clone()=0;

//These virtual methods can be implemented by the
//derived class to implement nontrivial functionality.
virtual void init();
virtual void initProbMax();
virtual std::string commandName();
virtual void command(std::string cmd);

...

};

#endif

47

EvtVSS.hh (simplified)

#ifndef EVTVSS_HH
#define EVTVSS_HH

#include "EvtGenBase/EvtDecayAmp.hh"

class EvtParticle;

class EvtVSS:public EvtDecayAmp {

public:
EvtVSS() {}
virtual ~EvtVSS();

void getName(std::string& name);
EvtDecayBase* clone();

void decay(EvtParticle *p);
void init();
void initProbMax();

};
#endif

48

EvtVSS.cc
void EvtVSS::init(){

// check that there are 0 arguments
checkNArg(0);

// check that there are 2 daughters
checkNDaug(2);

// check the parent and daughter spins
checkSpinParent(EvtSpinType::VECTOR);
checkSpinDaughter(0,EvtSpinType::SCALAR);
checkSpinDaughter(1,EvtSpinType::SCALAR);

}

void EvtVSS::decay(EvtParticle *p){

p->initializePhaseSpace(getNDaug(),getDaugs());

EvtVector4R pdaug = p->getDaug(0)->getP4();

double norm=1.0/pdaug.d3mag();
vertex(0,norm*pdaug*(p->eps(0)));
vertex(1,norm*pdaug*(p->eps(1)));
vertex(2,norm*pdaug*(p->eps(2)));

return;
}

#include <stdlib.h>
#include "EvtGenBase/EvtParticle.hh"
#include "EvtGenBase/EvtGenKine.hh"
#include "EvtGenBase/EvtPDL.hh"
#include "EvtGenBase/EvtVector4C.hh"
#include "EvtGenBase/EvtVector4R.hh"
#include "EvtGenBase/EvtReport.hh"
#include "EvtGenModels/EvtVSS.hh"
#include <string>

EvtVSS::~EvtVSS() {}

void EvtVSS::getName(std::string& model_name){
model_name="VSS";

}

EvtDecayBase* EvtVSS::clone(){
return new EvtVSS;

}

void EvtVSS::initProbMax() {
setProbMax(1.0);

}

49

Registering the model

The last step to do before you can use a model is to
register it with the EvtGen framework. This is done in the
EvtModelReg.cc:

modelist.Register(new EvtVSS);

For each instance of a decay in the decay table that uses
the VSS model
a new instance of the EvtVSS class is created using the
clone method.

50

Model arguments

Some models takes arguments:

Decay B0
1.00 D*- e+ nu_e PHOTOS HQET 0.92 1.18 0.72;
Enddecay

These arguments can be accessed in the model using the
methods:

getNArg() returns the number of arguments
getArg(i) returns the ith argument

HQET parameters

51

Decay models

52

Interfacing to EvtGen

53

Basic EvtGen interface (EvtGen.cc)
EvtGen myGenerator(

<DECAY.DEC location>,
<evt.pdl location>
<randomNumberEngine>.
<FSR generator>);

myGenerator.readUDecay(<user decay file>);
EvtParticle *myParentParticle;
….. (Set up parent particle properties)….

myGenerator.generateEvent(myParentParticle,t_init);

Optional: PHOTOS
is default.

54

Setting up random number generator
• Simple interface to use your favorite random number

engine:
class EvtCLHEPRandomEngine: public

EvtRandomEngine {
public:
double random();

};

double EvtCLHEPRandomEngine::random() {
static HepJamesRandom randengine;
return randengine.flat();

}

55

Initializing parent particle
//Find the particle whose name is “B0”
static EvtId B0=EvtPDL::getId(std::string(“B0”));

//The B0 is at rest
EvtVector4R p_init(EvtPDL::getMass(B0),0.,0.,0.);

//Then create a particle from this 4-vector
EvtParticle *myParentParticle;
myParentParticle=

EvtParticleFactory::particleFactory(B0,p_init);

56

Examples
• EvtGen/testEvtGen.cc is an example of code that

interfaces to EvtGen.
– It is very long only because it has lots of examples.
– See EvtGen/test/do_tests for examples of how these

run. Root scripts exist to make plots from some of
these examples.

– (Documentation very much lacking on this point…ask
us for specific info, desired examples)

– testEvtGen.cc also shows how to override the random
generators in PHOTOS and Pythia.

57

Topics in Bs from hadronic interactions

58

B_s Mixing

59

Data vs MC tuning

60

Data vs MC tuning
• General philosophy on decay table branching fractions:

– Try to use PDG (or new individual measurements)
where possible for exclusive branching fractions.

– Need to decay all (B) mesons, so significant
“interpretation” needed for inclusive BFs.

• Projections from theory / isospin / other constraints
wrt measurements.

• Educated and/or wild guesses
• Numbers in the decay table are definitely open to

discussion. We hope that we can all agree on the
best approach.

– (MC users will do what they wish anyway…)

61

Comparisons
• Yesterday showed EvtGen results on π/K/p/π0 spectra

as well as production of various resonances relative to
data.
– Would appreciate feedback on other resonances /

measurements that we should pay special attention to
in our MC tuning process.

62

Pythia tuning
• The “inclusive” component of the decay table decayed

by Pythia is the primary handle that we have used to
improve the data-MC agreement.

• Internal data on eta, eta’,omega, and phi resonance
production in B decays used during last round of MC
tuning. Adjustments of up to 40%.

• No real attempts to tune momentum sprecta yet, except
for leptons (Fully exclusive decay modes).
– B DsX study in Belle is an example of what the next

step must be.
– Need to push to get the data for these studies.

63

Pythia parameters that we have changed

Cut off parameter to stop frag. process0.3 PARJ(33)
Turn on D** production0.05PARJ(14-17)

Phi production0.4PARJ(11)
Phi production0.2PARJ(12)
Eta production1.0PARJ(25)
Eta’ production0.15PARJ(26)
D* production tuning (0.6 preferred for ee qq)0.45PARJ(13)
Turn off BB mixing in Pythia0MSTJ(26)
Same-0.004PARJ(55)
Same-0.04PARJ(54)
Same0.90PARJ(44)
Same0.50PARJ(43)
Same0.58PARJ(42)
Fragmentation parameters0.3PARJ(41)
Lund fragmentation function4MSTJ(11)

64

• Do any of these affect the fragmentation step?
• Should we worry about EvtGen vs. other generator

interference?
• Tuning done in very ad hoc fashion. Most handles

are indirectly related to the quantities that we
measure.

	EvtGen tutorial intro
	Outline
	Overview and decay algorithm
	Sequencial decays
	CP violating decays
	EvtGen decay algorithm
	Resonance decay modes and branching fractions are specified in DECAY.DEC input file
	After the full decay chain is determined, the mass of each particle is determined
	Finally, the decay kinematics are determined
	Decay amplitudes are used instead of probabilities
	Selection algorithm (I)
	Selection algorithm (II)
	Selection algorithm (III)
	Advantages to using decay amplitudes
	End of overview and algorithm
	evt.pdl and particle properties
	evt.pdl format
	Meaning of “Mass cutoff”
	Notes on evt.pdl
	Implemented models in EvtGen
	Semileptonic decays
	CP violation in B decays
	Generic amplitudes
	Special matrix elements
	DECAY.DEC and writing new decay files
	Generic decay file layout
	Parameter definitions
	Multiple parameter definitions
	Pythia parameters
	PHOTOS control
	Defining particle decays
	Another example of defining decay modes
	How to define a particle as stable
	Charge conjugates
	“User” decay files
	Particle “aliases”
	Charge conjugates for aliased particles
	Example of user decay file
	Control of line shape parameters
	Writing new decay models
	Writing new Physics Models
	Some coding history...
	States in EvtGen
	EvtGen support classes for states
	Example decay: V?SS
	The EvtDecayBase class
	EvtVSS.hh (simplified)
	EvtVSS.cc
	Registering the model
	Model arguments
	Decay models
	Interfacing to EvtGen
	Basic EvtGen interface (EvtGen.cc)
	Setting up random number generator
	Initializing parent particle
	Examples
	Topics in Bs from hadronic interactions
	B_s Mixing
	Data vs MC tuning
	Data vs MC tuning
	Comparisons
	Pythia tuning
	Pythia parameters that we have changed
	

