


CERN
2003.07.16
Leif Lönnblad

THEPEG
Toolkit for High Energy

Physics Event Generation

• Introduction

• Overview

• Status & Future Plans



What is THEPEG

THEPEG consists of the parts of

PYTHIA7 which were not specific to the

PYTHIA physics models. It provides a

general structure for implementing

models for event generation.

Both PYTHIA7 and HERWIG++ are built

on THEPEG.

But it is open for anyone. . .

Basic Structure

CLHEP

ThePEG

HERWIG++

Physics Models

Basic Structure

Physics Models

Pythia7

CLHEP

ThePEG

Physics Models

Pythia7 HERWIG++

Physics Models

Basic Structure

CLHEP

ThePEG

Physics Model(s)

Other++

Leif Lönnblad 2



The components of THEPEG

• Basic infrastructure: Smart pointers, extended type information,

object persistency, Exceptions, Dynamic loading, . . .

• Kinematics: Extra utilities on top of CLHEP vectors, 5-vectors,

flat n-body decay, . . . should be moved to CLHEP.

• Repository: Manipulation of interfaced objects. Setting of

parameters and switches and connecting objects together.

• Handler classes: to inherit from to implement a specific physics

model.

• Event record: Used to communicate between handler classes.

• Particle data: particle properties, decay tables, decayers etc...

Leif Lönnblad 3



THEPEG defines a set of abstract Handler classes for hard partonic

sub-processes, parton densities, QCD cascades, hadronization, etc. . .

These handler classes interacts with the underlying structure using a

special Event Record and a pre-defined set of virtual function

definitions.

The procedure to implement e.g. a new hadronization model, is to

write a new (C++) class inheriting from the abstract

HadronizationHandler base class, implementing the relevant

virtual functions.

Leif Lönnblad 4



The structure of the generation process is extremely dynamic:

Besides the standard Handler classes, there is also a general

StepHandler class which can do anything and can be inserted

anywhere in the generation chain.

In addition, each handler can add steps in the generation chain or

redo previous steps depending on the history of each event.

Leif Lönnblad 5



How to use THEPEG
Running THEPEG is separated into two phases.

• Setup:

A setup program is provided to combine different objects

implementing physics models together to build up an

EventGenerator object. Here the user can also change

parameters and switches etc. a

No C++ knowledge is needed for this. In the future we would like

a nice GUI so that the user can just click-and-drag.

The Repository already contains a number of ready-built

EventGenerators. It is also possible to specify

AnalysisHandler object for an EventGenerator.

In the end the built EventGenerator is saved to a file.
aSee tutorial next week.

Leif Lönnblad 6



• Running:

The saved EventGenerator can be simply read in and run

using a special slave program. If AnalysisHandlers have been

specified, this is all you have to do.

Alternatively the the file with the EventGenerator can be read

into any program which can then use it to generate events a

which can be sent to analysis or to detector simulation.

aThePEG::Events which can be translated into HepMC::GenEvents

Leif Lönnblad 7



The EventGenerator class is the main class administrating an

event generation run.

It maintains global information needed by the different models: The

ParticleData objects to be used, a StandardModel object with

couplings etc, a RandomGenerator, a list of AnalysisHandlers etc.

It also has an EventHandler object to administer the actual

generation.

Leif Lönnblad 8



The EventHandler IsA CollisionHandler which keeps a list of

SubProcessHandlers a each of which associates a

PartonExtractor object with a list of MEBase b objects. It also has

a SampleBase object to do the phase space sampling and

integration and a KinematicalCuts object to specify cuts.

The PartonExtractor uses PDFBase and RemnantHandler objects

to generate the incoming partons. And each pair of incoming partons

are combined with each MEBase object into an XComb object which

is responsible for the actual generation of the hard sub-process.

aWith two SubProcessHandlers you can generate both diffractive and non-

diffractive events in the same run.
bMatrix element objects, see tutorial next week

Leif Lönnblad 9



The CollisionHandler IsA PartialCollisionHandler which

after a sub-process has been generated administers the application of

different StepHandler objects divided up in groups.

Each of the groups has a specific main handler object and a list of

general StepHandlers to be applied before and after the main one.

The special handler classes are CascadeHandler,

MultipleInteractionHandler, HadronizationHandler and

DecayHandler.

The PartialCollisionHandler collision handler can be used

separately in a PartialEventGenerator object if the hard

sub-process has been generated from the outside.

Leif Lönnblad 10



Class structure of an Event

Collision*

Particle

list

Collision
Event

ParticleData

Step SubProcess*

Step*

list list

SubProcess* Particle*

list

Particle*

list

A fairly complicated structure to allow for complicated analysis. But

it should still be simple to do simple things:

PersistentIStream is("AFileWithAnEventGenerator.run");
EGPtr eg; // Open a file
is >> eg; // Read in an EventGenerator
Event ev = eg->shoot(); // generate an event...
vector<ParticlePtr> particles;
ev.getFinalState(particles); // Get the final-state particles.

Leif Lönnblad 11



The Particle class provides access to a lot of information. But the

class only has a pointer to a ParticleData, a Lorentz5Momentum

and a pointer to another object carrying the rest of the information

(colour, spin etc.) if needed.

Some of this information can be user-defined by creating classes

inheriting from e.g. the SpinBase or the completely general

EventInfoBase classes. This information can then be accessed

through dynamic casting.

Leif Lönnblad 12



How to implement PDF’s

A parton density is not just a function xfpj (x,Q2).

To add a PDF parameterization to PYTHIA7 we create a new class

inheriting from the PDFBase class. The following abstract virtual

methods must be implemented:

virtual bool canHandleParticle(tcPDPtr particle) const;

can this PDF handle the given particle?

virtual cPDVector partons(tcPDPtr particle) const;

which partons can be extracted from the given particle?

Leif Lönnblad 13



virtual double xfl(tcPDPtr particle, tcPDPtr parton,
Energy2 partonScale, double l,
Energy2 particleScale = 0.0*GeV2) const;

The main function giving the parton density for parton in particle at

some partonScale and momentum fraction l = log(1/x). Also the

off-shellness of the particle may be given (e.g. for virtual photon

densities).

• PDPtr (smart) pointer to a ParticeData object

• PDVector vector of pointers to ParticeData objects

• Energy2 Is currently typedef’ed to double but may in the

future be using the SIUnits (?) package

Leif Lönnblad 14



Status

THEPEG exists and is working. Snapshots of the current

development code is available from http://www.thep.lu.se/ThePEG.

Version 1.0α will be released this weekend.

PYTHIA7 is now based on THEPEG. It exists and is working.

Snapshots of the current development code is available from

http://www.thep.lu.se/Pythia7. Version 1.0α will be released this

weekend.

PYTHIA7/THEPEG includes some basic 2→ 2 matrix elements, a

couple of PDF parameterizations, remnant handling, initial- and

final-state parton showers, Lund string fragmentation and flat

n-body particle decays.

Leif Lönnblad 15

http://www.thep.lu.se/Pythia7
http://www.thep.lu.se/ThePEG


Future Plans

• PYTHIA7: Rework fragmentation to include junction strings.

• PYTHIA7: Multiple Interactionsc.

• PYTHIA7: Proper particle decays.

• PYTHIA7: All the rest...

• ARIADNE: Dipole shower.

• ARIADNE: LDC model with multiple interactionsc.

cMay imply changes to the way sub-processes are handled

Leif Lönnblad 16




