
Physicist Interface: Project Proposal & Status

AAM, 12 March 2003

Vincenzo Innocente

CERN/EP

"Blueprint" PI-Breakdown

Interactivity

Physicist's desktop

Analysis Tools

- Binned and unbinned statistical analysis
 - Data manipulation and transformation
 - Analysis (fitting) engine
 - Inspection of results

Visualization

- Data and results of statistical analysis
- Event simulation, reconstruction

Distributed analysis

- □ Transparent access to "grid" resources
 - "bsub" on the wan...
 - "root" on the wan...
- Tools to implement experiment's analysis workflow

Grid Portals

- □ Transparent access to "grid" resources
- Custom solution tailored to LHC experiment needs
 - Event collection handing
 - Metadata browsing
 - VDP definition
 - ...

Survey (dec 2003)

Meeting with each experiment

Blueprint contributors & readers (from computing and physics groups)

Meeting with partners

D EDG, US-Grid, LCG/GDA, Pool, Seal, Geant4, Anaphe, Root

Current practice and experience

- Short and medium term plans
- Requirements, constrains, expectations
- Possible common products and projects
- Specific Comments on:
 - Analysis Model, Computing Model
 - **Root**, Aida, Python, Event Visualization

Grid middleware, experiment workflow management

ALICE

Simple, consistent and coherent model:

- One application: AliRoot (Alice extension of Root)
- Two independent base components: Root and Alien
 - All external resources are interfaced to them
- Identical batch and interactive environment
- Already deployed to physicists: 2003 just consolidation work
- Full 3D interactive event display still missing
 - Non critical: one-way Root to OI gateway exists
- Risks (in adopting this model for PI)
 - Physicists interact only with Root and Alien: does it scale?
 - **Rely heavily on the ability of Root and Alien to respond to**
 - User requirements
 - Changing environment
 - New tools and computing paradigms

LHCb

Clear coherent model

- One analysis application (DaVinci) based on Gaudi
 - Physicists expected to "code" in DaVinci using Gaudi paradigm
- Gaudi Tag-collections with paw-ntuple interface and root-tree (not only) impl.
- Gaudi Histogram-service (AIDA based) with native Root implementation
- Python interactive environment with gateway to Root
- Ganga as grid physicists interface (not used for production in the short term)
- 3D event display (Panoramix) is a Gaudi extension based on OnX and HepVis
- DaVinci deployed in batch mode, Panoramix deployed
- □ Interactive environment and Ganga expected to be deployed early 2003

Risks

- **o** Some scenarios seems to traverse too many independent components
- Unclear role of Root in the interactive environment (just the best canvas around?)

CMS

Striking similarities with LHCb approach (fewer layers)

- □ COBRA 🗢 🗢 GAUDI
- □ IGUANA ⇐⇒ OnX+HepVis
- □ ORCA ⇐⇒ DaVinci
- Very similar python environment

Major effort to integrate grid middleware

- **T** Focus on production: physicist interface seen as its natural extension
- Request for means of controlling resources

Analysis environment

- □ Root used (as-is, not integrated) but not satisfactory
- □ Interactive version of ORCA is a requirement, mixed feeling on user interface

Risks

□ High integration with middleware, will migration be always efficient?

What's the future of a stand-alone Root environment?

ATLAS

Already Collaborating with LHCb on

- **GAUDI**
- **GANGA**

Still in a transition phase

- Many past projects in the area of physics analysis abandoned or dormant
- Emphasis on Abstract-Interfaces and implementation-independent descriptions
- Physicists not yet really exposed to new framework and tools:
 - use Root, no request for a new analysis environment

Major involvement in Grid projects in Europe and US

□ Lot of projects and products of potential interest (Grappa, Magda, ...)

Risks

- Emphasis on being "Independent of everything" may tend to produce duplicate middleware and to slow down application code development
- If Root is used as analysis environment, how analysis migrates back into "offline"?

Summary of Survey

Consensus on the "BluePrint Architecture"

Experiments have not finalized their physics and computing model

- Difficult to workout concrete use-cases and scenarios
- No reason to have a "physics-analysis RTAG" prior to to this

All experiments have developed distributed production workflow managers

- □ Integrated with monitoring, book-keeping, error-recovery, user-interfaces
- **Often not matching with current architectural view of international Grid projects**
- Worries about robustness, readiness and stability of grid middle-ware

Role of Root as analysis tool confirmed: CMS, LHCb and in part ATLAS expressed:

- Root does not play a central role in their analysis software
- Difference between root paradigm and experiment's computing paradigm

Difficulties in integrating it with their own software

Working Items for PI

Abstract interface to analysis services

- GEANT4 and some experiments do not wish to depend on a specific implementation
- **One implementation must be Root**
- Request for a coherent LCG analysis tool-set

Interactive analysis environment

- Access to experiment objects (event-data, algorithms etc)
- Access to high level Pool services (collections, metaData)
- Transparent use of LCG and grid services
 - "escape" to debug and detail monitoring mode required
- **GUI** (point&click) and scripting interface

Event and detector visualization

- □ Fully interactive (both "view" and "model")
- Integrated with the analysis environment
- Offering a large palette of 2D and 3D rendering

WP1: Analysis Services

✤ WP 1.1 - AIDA

- Review, Adjust, Extend
- Work started: first release March 19, AAM presentation April 9

WP 1.2 - Root implementation of AIDA

- □ In part just of "typewriting"-work
- **r**equires design work in some area where object-relationship are involved

WP 1.3 – "AIDA" interface to Seal and Pool services

- whiteboard
- collections

WP 1.4 - BluePrint compliant Analysis tool set

- Put on hold by SC2
- □ Join effort with Math project?

Effort: 2.5 FTE

WP2: Analysis Environment

WP 2.1 - Basic Interactive LCG application

Depends on SEAL

- plug-in manager, dictionary, python binding, distributed applications
- May start from Iguana/OnX

WP 2.2 - Core Visualization services

- 2D & 3D Canvas, basic primitives, basic operations
- Model-View architecture (picking, etc)
- Export to viewers and printers

WP 2.3 - Bridge to Root

To use root as canvas and analysis engine

WP 2.4 - Bridge from Root

To use PI Analysis Services from Root (Cint prompt)

Effort: 2.5 FTE

WP3: Pool & Grid Pl

WP 3.1 - Collection manipulation

including full "MetaData" handling

WP 3.2 - Interface to low-level services

□ catalog, replicas (local, grid)

WP 3.3 - Job wizard

preparation, submission, validation

WP 3.4 - Job helpers

n monitoring, error-recovery, resource discovery

Effort: 6 FTE

SC2 decided to start a RTAG on this item May well go outside PI scope

WP4: Event and Detector Visualization

WP 4.1 - HepVis

Review, adjust, extend to cover LHC & Geant4 needs

WP 4.2 - "Extend" WP2 to provide event and detector visualization and interactivity

□ Start from Iguana/OrcaVis & OnX/Panoramix

WP 4.3 - Geant4 visualization application

Out of the box application configured for Geant4

Effort: 2 FTE

Put on Hold by SC2 till May

WP5: Infrastructure & Documentation

WP 5.1 - Liaison with SPI

- External Software
- Savannah Portal
- CVS repository
 - CVS view
- Release area
 - Doxigen, LXR
- "Daily" build
 - Doxigen, LXR
 - Web area
- WP 5.2 Liaison with Experiments
- WP 5.3 Documentation

Effort: 1 FTE

Organization

For each work package

- Organize an inception workshop
 - Identify direct contributors (people, software)
 - Identify partners (other projects)
 - Identify users
 - Finalize work package breakdown
- Get commitment from developers, experiments, institutions
 - As producers and as users
- Produce timescale that fits experiments' schedule
- Assign LCG person-power
- **T** First deployment of products after **Three months** provided that:
 - The basic infrastructures and services (grid, pool, seal, spi) are ready
 - The developers of the present products commit 100% to the project
 - Most of the code already exists!

Timescale

Start work on Analysis Services and Environment now

- Work on Analysis Services started
- Experiments contacted about experts on interactive environment: not a single answer yet
- Collaborate with Pool and Seal to define and implement proper interfaces to their services and components
- Review with SC2 strategy how to keek-off "Interactive access and visualization of Events" in May
- Wait that EGEE and ITR proposals are out before planning grid related work
 - Close collaboration with ITR and EGEE proponents established
 - □ SC2 will start a RTAG soon

Collaboration

- PI will re-use, reengineer and finally integrate in a coherent software-base a large, heterogeneous collection of products mostly already currently available
- In the short/medium time-scale many of these products, even those HEP specific, may stay "external" to LCG. Mechanisms should be put in place to guarantee:
 - □ LCG architecture is respected (the exception cannot become the rule)
 - □ LHC experiments' requirements and priorities are taken into account
 - Eventual migration into LCG managed software-base in the long-term
- The success of this project will depend, even more than other LCG projects, on the commitment of all involved parties:
 - Product providers and developers
 - Application developers and users
 - LCG developers and management

Concluding Remarks

Definite interest in a common LHC Physicist Interface

- □ Areas identified by the Blueprint RTAG confirmed
- Priorities and timescale need to be verified with experiments
 - Analysis and computing models still in development
 - "Challenges" schedule and content not finalized

Role of components (root, aida, qt, python, grid-mw) clarified

- Enough to start working
- □ Should be revised as project progress and user-base enlarge

Major concerns about quality of middle-ware (grid, root, etc...)

Stability, robustness, data-integrity, readiness

Collaboration mechanisms with external projects needs to be clarified

