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What is an estimator?
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Y What is a good estimator?
'::'“"-.}ﬁi

One often hasto

- . . work with less-than-
A perfect estimator is: perfect estimators

- Consistent Limit(3)=a
N®¥
* Unbiassed
(8)= @2 %) P(xy;@) P(X; ) P(%;a)...dxdX,... =@

i

» Efficient Minimum Variance Bound

V(é):((é- (é))2> minimum V (&) 3 =

<d2 In L>
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The Likelihood Function

Set of data {X;, X, X, .Xn}
Each x may be multidimensional - never mind
Probability depends on some parameter a
a may be multidimensional - never mind
Total probability (density)
P(x1;8) P(Xz;a) P(Xg;@) ...P(Xn;@)=L (X, %o, Xg, ... Xy ;@)

The Likelihood

Slides

Maximum Likelihood
Estimation

Given data {X;, X%, X, ..X\} estimate a by
maximising the likelihood L(X;, X%, X3, ... Xy ;@)
dL
=0
dA_; Ln

a=a
In practice usually maximise In L as
it's easier to calculate and handle;
just add the In P(x;)
ML has lots of nice properties
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Properties of ML estimation More about ML

It's consistent

n (no big deal)  Itis not ‘right’. « Numerical Methods
* It's biassed for small N Just sensible. are often needed
May need to worry . - -
* It is efficient for large N * Itdoes not_ YrLs ‘ Mg)grr_nsapon_ 4
Saturates the Minimum Variance Bound the ‘most likely MiDinisatiopinel
value of @ It's the variable is not easy

e Itisinvariant :
If you switch to using u(a), then (=u(a) value of a for which . yse MINUIT but

. . t_his data is most remember the
m L| : likely. minus sign
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ML does not give
. Least Squares
goodness-of-fit
. y
¢ ML will not F—HtHt — » Measurements of y at
complain if your + various x with errors s
assumed P(x;a) is Fit P(x)=a,x+a, and prediction f(x;a)
A o ili -(y- f(xa)?/2s?
rubbish S e J[ i;olt_)abmty p e (v fxa)
e The value of L tells ° 2
L=3aN - )0
you nothing % J1g M:
Just like you get from 27! S; a
-I- fitting e To maximise In L,
................. ‘I‘ B e e minimise c?
-_|- -|_- '1' ......... ‘I‘ X SoML ‘proves’ Least Squares.
Siides L Slide10 But what ‘proves’ ML? Nothing
Least Squares: The Reall .
au . y Chi Squared Results
nice thing
e Should get c2»1 per data point Large c2 comes from  Small c2 comes from
* Minimise c?2 makes it smaller - effectis 1 1. Bad 1. Overestimated
unit of c2 for each variable adjusted. Measurements errors
(Dimensionality of MultiD Gaussian 2. Bad Theory 2. Good luck
decreased by 1.) 3. Underestimated
Ndegrees of Freedom:Ndata pts — N parameters errors
 Provides ‘Goodness of agreement figure 4. Bad luck L
which allows for credibility check




Fitting Histograms

Often put {X;} into bins
Data is then {n;}
n; given by Poisson,
mean f(X;) =P(x;)Dx
4 Techniques
Full ML =
Binned ML X
Proper c2
Simple c?
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What you maximise/minimise

e Full ML |n|_:éi|np(xi;a)

e Binned ML
_ o . . o
InL—aiInPomon(nJ,fJ)»aiq Inf,- f,

«  Proper c? 3 ‘(ni' fi)z

» Simple c? - .(nj_ fj)z
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Which to use?

¢ Full ML: Uses all information but may be
cumbersome, and does not give any
goodness-of-fit. Use if only a handful of
events.

¢ Binned ML: less cumbersome. Lose
information if bin size large. Can use c? as
goodness-of-fit afterwards

e Proper c2: even less cumbersome and
gives goodness-of-fit directly. Should
have n; large so Poisson® Gaussian

e Simple c2: minimising becomes linear.

Must have n; large
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Consumer tests show

¢ Binned ML and Unbinned ML give similar
results unless binsize > feature size

¢ Both c2methods get biassed and less
efficient if bin contents are small due to
asymmetry of Poisson

« Simple c2suffers more as sensitive to
fluctuations, and dies when bin contents
are zero
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Orthogonal Polynomials

Fit a cubic: Standard polynomial
F(X)=Cot ¢ X+ CX2+ C5X3
Least Squares [S(y-f(x;))?] gives

FL X X XS0 230
¢x X X XThr e+
gf X X egel a0y
;é‘xz X4 XS XGI C3E X?.yTﬂ
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Define Orthogonal
Polynomial
Py(x)=1
P(X)=Xx +aqPg(X)
Po(X)=X?+a1,Py(X) + ag,Pg(X)
P3(X)=x3+8,3P5(X) + a15P1(X) +a43Po(X)
Orthogonality: S,P;(x,) P;(x,) =0 unless i=j
aij:'( errj F>i (Xr))/ Sr Pi (Xr)2
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Use Orthogonal Polynomial

T(X)=C' Po(X)+ €' P1(X)+ C',P,(X)+ C' sP4(X)
Least Squares minimisation gives
c'=SyP,/ SP?
Special Bonus: These coefficients are 'I"’/
UNCORRELATED ’-,I.,/
Simple example: -
Fit y=mx+c or +
y=m(x -"x)+c’
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Optimal Observables
Function of the form

f g
P(x)=f(x)+a g(x) j-@x

e.g. signal+background, taupolarisation, extra couplings

A measurement x contains info about a

Depends on f(x)/g(x) ONLY.
Work with O(x)=F(x)/g(x)
o

\f

Write 0= OEdX*‘ a(jfdx
Use —
L& f2 0/,
a =g0 = OEdX;/ Ofdx

Why this is magic
éz%%— (‘);—de%/(‘)fdx

It's efficient. Saturates the MVB. As good as ML
X can be multidimensional. O is one variable.

In practice calibrate “O and & using Monte Carlo

If a is multidimensional there is an O for each

If the form is quadratic then use of the mean OO

Slide21 is not as good as ML. But close.

Extended Maximum
Likelihood
¢ Allow the normalisation of P(x;a) to
float
e Predicts numbers of events as well as
their distributions
N_ ., = P(x; a)dx
 Need to modify L wes = P06 2)
InL=3 InP(x;a) - (P(xa)dx
» Extra term'stops normalistion
shooting up to infinity
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Using EML

e IT the shape and size of P can vary
independently, get same answer as ML
and predicted N equal to actual N

e If not then the estimates are better
using EML

e Be careful of the errors in computing
ratios and such
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