Statistics for $\mathcal{H E P}$
Roger Barlow
Manchester Uliversity
Lecture 3: Estimation

Slide 1

About Estimation

Given these distribution parameters, what can we say about the data?
Inference

Given this data, what can we say about the properties or parameters or correctness of the distribution functions?

What is anestimator?

$$
\hat{\mu}(\{x\})=\frac{1}{N} \sum_{i} x_{i}
$$

Anestimator is a
$\hat{V}(\{x\})=\frac{1}{N} \sum_{i}\left(x_{i}-\hat{\mu}\right)^{2}$ procedure giving a value for a parameter or property of the distribution as a
$\underset{\substack{\text { Slide } 3}}{\hat{V}(\{x\})=\frac{1}{N-1} \sum_{i}\left(x_{i}-\hat{\mu}\right)^{2} \quad \begin{array}{l}\text { function of the } \\ \text { actual data values }\end{array}}$
What is a good estimator?

One often has to work with less-than-

$$
\hat{\mu}(\{x\})=\frac{x_{\max }+x_{\min }}{2}
$$ perfect estimators

A perfect estimator is:

- Consistent $\operatorname{Limit}_{N \rightarrow \infty}(\hat{a})=a$
- Unbiassed
$\langle\hat{a}\rangle=\iiint \ldots \hat{a}\left(x_{1}, x_{2}, \ldots\right) P\left(x_{1} ; a\right) P\left(x_{2} ; a\right) P\left(x_{3} ; a\right) \ldots d x_{1} d x_{2} \ldots=a$
- Efficient

Minimum Variance Bound
$V(\hat{a})=\left\langle(\hat{a}-\langle\hat{a}\rangle)^{2}\right\rangle$ minimum
$V(\hat{a}) \geq \frac{-1}{\left\langle\frac{d^{2} \ln L}{d a^{2}}\right\rangle}$

Total probability (density)
$\mathcal{P}\left(x_{1} ; a\right) \mathcal{P}\left(x_{2} ; a\right) \mathcal{P}\left(x_{3} ; a\right) \ldots P\left(x_{X} ; a\right)=\mathcal{L}\left(x_{1}, x_{2}, x_{3}, \ldots x_{X} ; a\right)$
The Likelihood

The Likelifood Function

Set of data $\left\{x_{1}, x_{2}, x_{3}, \ldots x_{3}\right\}$
Each x may be multidimensional - never mind Probability depends on some parameter a
a may be multidimensional - never mind

Maximum Likelifood Estimation

Given data $\left\{x_{1}, x_{2}, x_{3}, \ldots x_{X}\right\}$ estimate a by
maximising the likelifood $\mathcal{L}\left(x_{1}, x_{2}, x_{3}, \ldots x_{x} ; a\right)$

$$
\left.\frac{d L}{d A}\right|_{a=\hat{a}}=0
$$

In practice usually maximise in \mathcal{L} as it's easier to calculate and handle; just add the $\ln P\left(x_{i}\right)$
ML has lots of nice properties
Slide 6

Properties of ML estimation

- It's consistent
(no big deal)
- It's biassed for small \mathcal{N}

May need to worry

- It is efficient for large \mathcal{N}

Saturates the Minimum Variance Bound

- It is invariant

If you switch to using $u(a)$, then $\hat{u}=u(\hat{a})$

More about ML

- It is not right: I ust sensible.
- It does not give the 'most likely value of a '. It's the value of a for which this data is most likely.
- Numerical Metfods are often needed
- Maximisation / Minimis ation in >1 variable is not easy
- Ulse MiŇUIT but remember the minus sign

ML does not give goodness-of-fit

- ML will not
 complain if your assumed $\mathcal{P}(x ; a)$ is rubbish
- The value of \mathcal{L} tells you nothing
will give $a_{1}=0$; constant P
$\mathrm{L}=\mathrm{a}_{0}{ }^{\mathrm{N}}$
Just like you get from

Least S quares

- Measurements of y at various χ with errors σ and prediction $f(x ; a)$
- Probability $\propto e^{-(y-f(x a))^{2} / 2 \sigma^{2}}$
- Ln L

x So ML 'proves'Least Squares.

Least Squares: The Really nice thing

- Should get $\chi^{2} \approx 1$ per data point
- Minimise χ^{2} makes it smaller-effect is 1 unit of χ^{2} for each variable adjusted. (Dimensionality of $\mathfrak{M u l t i D}$ Gaussian decreased by 1.)

$$
\mathcal{N}_{\text {degrees of freedom }}=\mathcal{N}_{\text {data pts }}-\mathcal{N}_{\text {parameters }}
$$

- Provides 'Goodness of agreement' figure which allows for credibility check

Cfis quared Results

Large χ^{2} comes from Small χ^{2} comes from

1. $\mathcal{B a d}$

Measurements

1. Overestimated errors
2. Bad The ory
3. Underestimated

errors

4. Bad luck

Slide 12
2. Good luck

,

Fitting Histograms

Often put $\left\{x_{i}\right\}$ into bins
Data is then $\left\{n_{j}\right\}$
n_{j} given $6 y$ Poisson,

$$
\text { mean } f\left(x_{j}\right)=\mathcal{P}\left(x_{j}\right) \Delta x
$$

4 Techniques
Full $\mathcal{M L}$
Binned ML
Proper χ^{2}
Simple χ^{2}
HaH| | ${ }_{x}$

x

Slide 14
What you maximise / minimise

- $\mathcal{F} u l l \operatorname{ML} \quad \ln L=\sum_{i} \ln P\left(x_{i} ; a\right)$
- Binned ML
$\ln L=\sum_{j} \ln \operatorname{Poisson}\left(n_{j} ; f_{j}\right) \approx \sum_{j} n_{j} \ln f_{j}-f_{j}$
- Proper $\chi^{2} \quad \sum_{j} \frac{\left(n_{j}-f_{j}\right)^{2}}{f_{j}}$
- Simple χ^{2}

$$
\sum_{j} \frac{\left(n_{j}-f_{j}\right)^{2}}{n_{j}}
$$

Which to use?

- Full ML: Oles all information but may be cumbersome, and does not give any goodness-of-fit. else if only a handful of events.
- Binned ML: less cumbersome. Lose information if bin size large. Can use χ^{2} as goodness-of-fit afterwards
- Proper χ^{2} : even less cumbersome and gives goodness-of-fit directly. Should have n_{j} large so Poisson \rightarrow Gaussian
- Simple χ^{2} : minimising becomes linear. slide 15 Must have n_{j} large

Consumer tests show

- Binned $\mathcal{M L}$ and Unpinned $\mathcal{M L}$ give similar results unless binsize >feature size
- Both χ^{2} methods get biassed and less efficient if bin contents are small due to asymmetry of Poisson
- Simple χ^{2} suffers more as sensitive to fluctuations, and dies when bin contents are zero

Orthogonal Polynomials

Fit a cubic: Standard polynomial

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

Least S quares $\left[\Sigma\left(y_{i}-f\left(x_{i}\right)\right)^{2}\right]$ gives

$$
\left(\begin{array}{cccc}
\frac{1}{\bar{x}} & \bar{x} & \overline{x^{2}} & \overline{x^{3}} \\
\frac{x^{2}}{x^{2}} & \frac{x^{4}}{\overline{x^{3}}} & \overline{x^{4}} & \frac{c_{0}}{x^{5}} \\
\overline{x^{3}} & \frac{c_{1}}{x^{6}} & \frac{\bar{x}}{c_{2}} \\
c_{2} \\
c_{3}
\end{array}\right)=\binom{\frac{\bar{y}}{\frac{x y}{x^{2} y}}}{\frac{x^{3}}{3}}
$$

Slide 17 Invert and solve? Think first!

Define Orthogonal Polynomial

$$
\mathcal{P}_{0}(\chi)=1
$$

$P_{1}(x)=x+a_{01} P_{0}(x)$
$P_{2}(\chi)=\chi^{2}+a_{12} P_{1}(\chi)+a_{02} P_{0}(\chi)$
$\mathcal{P}_{3}(\chi)=\chi^{3}+a_{23} \mathcal{P}_{2}(\chi)+a_{13} \mathcal{P}_{1}(\chi)+a_{03} \mathcal{P}_{0}(\chi)$
Orthogonality: $\Sigma_{r} \mathcal{P}_{i}\left(x_{r}\right) \mathcal{P}_{j}\left(x_{r}\right)=0$ unless $i=j$ $a_{i j}=-\left(\Sigma_{r} \chi_{r}^{j} P_{i}\left(\chi_{r}\right)\right) / \Sigma_{r} P_{i}\left(\chi_{r}\right)^{2}$

Ulse Orthogonal Polynomial

$f(x)=c{ }_{0} \mathscr{P}_{0}(x)+c{ }_{1}{ }_{1} P_{1}(x)+c{ }_{2} \mathcal{P}_{2}(\chi)+c{ }_{3} \mathcal{P}_{3}(x)$
Least S quares minimis ation gives

$$
c_{i}^{\prime}=\Sigma y \mathcal{P}_{i} / \Sigma \mathcal{P}_{i}^{2}
$$

Special Bonus: These coefficients are UNNCORRELATED
Simple example:
Fit $y=m \chi+c$ or
$y=m(x-\bar{x})+c$

Slide 19

Why this is magic

$$
\hat{a}=\left(\bar{O}-\int \frac{f^{2}}{g} d x\right) / \int f d x
$$

It's efficient. Saturates the $\mathcal{M V} \mathcal{B}$. As good as $\mathcal{M L}$
x can be multidimensional. O is one variable.
In practice calibrate \bar{O} and \mathfrak{a} using Monte Carlo

If a is multidimensional there is an O for each
If the form is quadratic then use of the mean $O O$
Slide 21 is not as good as ML. But close.

Ulsing $E M L$

- If the shape and size of P can vary independently, get same answer as ML and predicted \mathcal{N} equal to actual \mathfrak{N}
- If not then the estimates are better using EML
- Be careful of the errors in computing ratios and such

