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Roger Barlow

Manchester University

Lecture 4: Confidence Intervals

Slide 2

The Straightforward 
Example

Apples of different weights

Need to describe the 
distribution

µ = 68g         σ = 17 g

50 100    

All weights between 24 and 167 g (Tolerance)

90% lie between 50 and 100 g

94% are less than 100 g

96% are more than 50 g

Confidence 
level 

statements
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Confidence Levels

• Can quote at any level
(68%, 95%, 99%…)

• Upper or lower or twosided
(x<U    x<L    L<x<U)

• Two-sided has further 
choice

(central, shortest…)

U

L U’
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The Frequentist Twist

50 100    

Particles of the same weight

Distribution spread by 
measurement errors

What can we say about M?

µ = 68       σ = 17 

“M<90” or “M>55” or “60<M<85” @90% CL

These are each always true or always false

Solution: Refer to ensemble of statements
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Frequentist CL in detail

You have a meter: no bias,
Gaussian error 0.1.

For a value XT it gives a value XM
according to a Gaussian Distribution

XM is within 0.1 of XT 68% of the time
XT is within 0.1 of XM 68% of the time
Can state XM-0.1<XT<XM+0.1 @68% CL
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Confidence Belts
For more 
complicated 
distributions it 
isn’t quite so 
easy

But the 
principle is the 
same

Construct 
Horizontally

Read 
Vertically

Measured X

True X
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Coverage
“L<x<U” @ 95% confidence
(or “x>L” or “x<U”)
This statement belongs to an 

ensemble of similar 
statements of which at 
least* 95% are true

95% is the coverage
This is a statement about U 

and L, not about x.

*Maybe more. Overcoverage
EG composite hypotheses.
Meter with resolution ≤ 0.1

Think about: the difference 
between a 90% upper limit 
and the upper limit of a 
90% central interval.
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Discrete Distributions
CL belt edges 

become steps

True 
continuous 

p or λ

Measured discrete N

May be unable 
to select (say) 

5% region

Play safe. 
Gives 

overcoverage

Binomial: see tables

Poisson
Upper Lower

90 95 9 9 90 95 99
0 2.3 3 4.61
1 3.89 4.74 6.64 0.11 0.05 0.01
2 5.32 6.3 8.41 0.53 0.36 0.15
3 6.68 7.75 10.05 1.1 0.82 0.44

Given 2 events, if the true mean is 6.3 (or more) 
then the chance of getting a fluctuation this low 
(or lower) is only 5% (or less)  
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Problems for Frequentists
Weigh 
object+container with some 

Gaussian precision
Get reading R

R-σ < M+C < R+σ @68% 
R-C-σ < M < R-C+σ @68%

E.g. C=50, R=141, σ=10
81<M<101 @68%

E.g. C=50, R=55, σ=10
-5 < M <  5 @68%

E.g. C=50, R=31, σ=10
-29 < M < -9 @68%

Poisson: Signal + Background 

Background mean 2.50

Detect 3 events: 
Total < 6.68 @ 95%

Signal<4.18@95%

Detect 0 events
Total < 2.30 @ 95%

Signal < -0.20 @ 95%

These statements are OK. 
We are allowed to get 32% / 5% wrong.   
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Bayes to the rescue

Standard (Gaussian) measurement
• No prior knowledge of true value
• No prior knowledge of 

measurement result
• P(Data|Theory) is Gaussian
• P(Theory|Data) is Gaussian
Interpret this with Probability 

statements in any way you please

)(
)(

)|(
)|( TheoryP

DataP
TheoryDataP

DataTheoryP =

xtrue

Gives same limits 
as Frequentist 

method for simple 
Gaussian
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Bayesian Confidence 
Intervals (contd)

Observe (say) 2 events
P(λ;2)∝P(2; λ)=e- λ λ2

Normalise and interpret

If you know background 
mean is 1.7, then you know 
λ>1.7

Multiply, normalise and 
interpret

2 λ
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Bayes: words of caution

Taking prior in λ as flat is not justified
Can argue for prior flat in ln λ or 1/ √λ

or whatever
Good practice to try a couple of priors 

to see if it matters
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Feldman-Cousins Unified Method
Physicists are human
Ideal Physicist
1. Choose Strategy
2. Examine data
3. Quote result

Real Physicist
1. Examine data
2. Choose Strategy
3. Quote Result

Example:

You have a background of 
3.2

Observe 5 events?  Quote 
one-sided upper limit 
(9.27-3.2 =6.07@90%)

Observe 25 events? Quote 
two-sided limits  
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“Flip-Flopping”
S

N

Allowed

S

N

Allowed

1 sided 2 sided

S

N

This is not a true 
confidence belt! 
Coverage varies.
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Solution: Construct belt that 
does the flip-flopping

S

N

For 90% CL

For every S select set of      
N-values in belt

Total probability must sum to 
90% (or more): there are many 
strategies for doing this

Crow & Gardner strategy (almost right):

Select N-values with highest probability 
→ shortest interval Slide 16

Better Strategy
N is Poisson from S+B

B known, may be large
E.g. B=9.2,S=0 and N=1
P=.1% - not in C-G band

But any S>0 will be worse

To construct band for a 
given S:

For all N:
Find P(N;S+B) and

Pbest=P(N;N) if (N>B) 
else  P(N;B)

Rank on P/Pbest
Accept N into band until 

Σ P(N;S+B) ≥90% Fair comparison of P is with 
best P for this N

Either at S=N-B or S=0
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Feldman and Cousins 
Summary

• Makes us more 
honest (a bit)

• Avoids forbidden 
regions in a 
Frequentist way

• Not easy to calculate
• Has to be done 

separately for each 
value of B

• Can lead to 2-tailed 
limits where you don’t 
want to claim a 
discovery

• Weird effects for 
N=0; larger B gives 
lower (=better) upper 
limit
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Maximum Likelihood and 
Confidence Levels

ML estimator (large N) has variance 
given by MVB

At peak                        For large N
Ln L is a parabola (L is a Gaussian)
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MVB example

N Gaussian measurements: estimate µ

Ln L given by

Differentiate twice wrt µ

Take expectation value – but it’s a constant
Invert and negate:   
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Another MVB example

N Gaussian measurements: estimate σ
Ln L still given by
Differentiate twice wrt σ

Take expectation value <(xi-µ)2>= σ 2 ∀ i
Gives
Invert and negate:   

( )πσ
σ

µ 2ln
2

)(
2

2

Nx

i

i −−− ∑

N
V

2
)ˆ(

2σσ =

24

2)(3
σσ

µ Nx

i

i +−− ∑

2

2
σ
N−

Slide 21

ML for small N
ln L is not a parabola

Argue: we could (invariance) transform to some a’ for which it 
is a parabola

We could/should then get limits on a’ using standard Lmax-½ 
technique

These would translate to limits on a
These limits would be at the values of a for which L= Lmax-½ 

So just do it directly

a a’
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Multidimensional ML 

• L is multidimensional Gaussian

a

b
For 2-d   39.3% lies within 1σ
i.e. within region bounded by  

L=Lmax-½

For 68% need L=Lmax-1.15

Construct region(s) to taste 
using numbers from 
integrated χ2 distribution
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Confidence Intervals

• Descriptive
• Frequentist

– Feldman-Cousins technique
• Bayesian
• Maximum Likelihood

– Standard
– Asymmetric
– Multidimensional


