Statistics for $\mathcal{H E P}$
 Roger Barlow
 Manchester Ulniversity

Lecture 4: Confidence Intervals

The Straightforward

 Example

Apples of different weights Need to describe the distribution

$$
\mu=68 g \quad \sigma=17 g
$$

50100

Slide 2
$\mathcal{A l l}$ weights between 24 and $167 g$ (Tolerance) 90% lie between 50 and 100 g)

Confidence level

Confidence Levels

- Can quote at any level
$(68 \%, 95 \%, 99 \% .$.
- Upper or lower or twosided $(x<\mathcal{U l} \quad x<\mathcal{L} \quad \mathcal{L}<x<\mathcal{L})$
- Two-sided has further choice
(central, shortest..)

Slide 3

The $\mathcal{F r}$ equentist \mathcal{T} wist

Particles of the same weight
Distribution spread by
measurement errors
What can we say about \mathcal{M} ?

$$
\mu=68 \quad \sigma=17
$$

" $\mathcal{M}<90$ " or " $\mathcal{M}>55$ "or" $60<M<85$ "@ $90 \% ~ C L$

These are each always true or always false
Solution: Refer to ensemble of statements

Slide 4

Frequentest CLindetail

You fave a meter: no bias,
Gaussian error 0.1.
For a value $X_{\mathcal{T}}$ it gives a value $X_{\mathcal{M}}$ according to a Gaussian Distribution $X_{\mathcal{M}}$ is within 0.1 of $X_{\mathcal{T}} 68 \%$ of the time $X_{\mathcal{T}}$ is within 0.1 of $X_{\mathcal{M}} 68 \%$ of the time Can state $X_{\mathscr{M}^{-}} 0.1<X_{\mathcal{T}}<X_{\mathcal{M}^{\prime}}+0.1 @ 68 \% \mathcal{C L}$

Confidence Belts

Construct Horizontally

Read Vertically

Measured X

Coverage

Think about: the difference between a 90% upper limit and the upper limit of a 90% central interval.

Slide 7

"L<xくてU" @ 95\% confidence
(or " $x>$ " $^{\prime \prime}$ or " $x<u$ ")
This statement belongs to an ensemble of similar statements of which at least* 95% are true
95% is the coverage
This is a statement about \mathcal{U} and L, not about x.
*Maybe more. Overcoverage EG composite hypotheses. Meter with resolution ≤ 0.1

Discrete Distributions

CL belt edges become steps

May be unable to select (say) 5% region Play safe. Gives overcoverage

	Upper			Lower		
	90	95	99	90	95	
0	2.3	3	4.61			
1	3.89	4.74	6.64	0.11	0.05	
2	5.32	6.3	8.41	0.53	0.36	
3	6.68	7.75	10.05	1.1	0.82	

Given 2 events, if the true mean is 6.3 (or more) then the chance of getting a fluctuation this low (or low er) is only 5\% (or less)

Problems for $\mathcal{F r e q u e n t i s t s ~}$

Weigf object+container with some Gaussian precision
Getreading R

$$
\mathcal{R} \cdot \sigma<\mathcal{M}+\mathcal{C}<\mathcal{R}+\sigma @ 68 \%
$$

$$
\mathcal{R} \cdot \mathcal{C} \cdot \sigma<\mathcal{M}<\mathcal{R} \cdot \mathcal{C}+\sigma @ 68 \%
$$

$$
\text { E.g. } C=50, \mathcal{R}=141, \sigma=10
$$

$$
81<\mathfrak{M}<101 @ 68 \%
$$

$$
\text { E.g. } \mathcal{C}=50, \mathcal{R}=55, \sigma=10
$$

$$
-5<\mathcal{M}<5 @ 68 \%
$$

$$
\text { E.g. } \mathcal{C}=50, \mathcal{R}=31, \sigma=10
$$

$$
-29<\mathcal{M}<-9 @ 68 \%
$$

Slide 9

Poisson: Signal + Background
Background me an 2.50
Detect 3 events:
Total<6.68@95\%
Signal<4.18@95\%
Detect 0 events

$$
\begin{gathered}
\text { Total<2.30@95\% } \\
\text { Signal<-0.20@95\% }
\end{gathered}
$$

These statements are $O \mathcal{K}$ We are allowed to get $32 \% / 5 \%$ wrong. But they are stupid

Bayes to the rescue $P($ Theory \mid Data $)=\frac{P(\text { Data } \mid \text { Theory })}{P(\text { Data })} P($ Theory $)$

Standard (Gaussian) measurement

- No prior knowle dge of true value
- No prior Knowle dge of measurement result
- P(Data \mid Theory) is Gaussian
- P(Tfeory|Data) is Gaussian

Interpret this with Probability
statements in any way you please

Gives same limits as Frequentist method for simple Gaussian

Bayesian Confidence Intervals (contd)

Observe (say) 2 events $\mathcal{P}(\lambda ; 2) \propto \mathcal{P}(2 ; \lambda)=e^{-\lambda} \lambda^{2}$
\mathcal{N} ormalise and interpret

If you know background mean is 1.7, then you know $\lambda>1.7$
Multiply, normalise and interpret

Slide 11

Bayes: words of caution

Taking prior in λ as flat is not justified
Can argue for prior flat in $\ln \lambda$ or $1 / \sqrt{ } \lambda$ or whatever
Good practice to try a couple of priors to see if it matters

$\mathcal{F e}$ ldman-Cousins Unified Method

Physicists are human

Ideal Physicist

1. Choose Strategy

Example:

You have a background of
2. Examine data
3. Quote result

Slide 13

> Real Physicist
> 1. Examine data
> 2. Choose Strategy
> 3. Quote Result

Observe 5 events? Quote one-sided upper limit (9.27-3.2 =6.07@90\%)

Observe 25 events? Quote two o-sided limits

Slide 14

Solution: Construct belt that does the flip-flopping

N

For 90% CL
For every S select set of \mathcal{N}-values in belt

Total probability must sum to 90% (or more): there are many strategies for doing this

Crow \& Gardner strategy (almost right): Select \mathcal{N}-values with fighest probability
Slide $15 \quad \rightarrow$ sfiortest interval

Better Strategy

\mathcal{N} is Poos son from $S+\mathcal{B}$
\mathcal{B} known, may be large
E.g. $\mathcal{B}=9.2, \mathcal{S}=0$ and $\mathcal{N}=1$ For all \mathcal{N} :
$\mathcal{P}=.1 \%$ - not in C-G 6 and
But any $S>0$ will be worse

$$
\begin{array}{r}
\text { Fair comparison of } \mathcal{P} \text { is with } \\
\text { Gest } \mathbb{P} \text { for this } \mathcal{N}
\end{array}
$$

To construct b and for a given S :

Find $P(\mathcal{N} ; \mathcal{S}+\mathcal{B})$ and

$$
\begin{array}{r}
\mathcal{P}_{\text {best }}=\mathcal{P}(\mathcal{N} ; \mathcal{N}) \text { if }(\mathcal{N}>\mathcal{B}) \\
\text { else } \mathcal{P}(\mathcal{N} ; \mathcal{B})
\end{array}
$$

Accept \mathcal{N} into band until $\Sigma \mathcal{P}(\mathcal{N} ; \mathcal{S}+\mathcal{B}) \geq 90 \%$ Either at $S=\mathcal{N}-\mathcal{B}$ or $S=0$

Feldman and Cousins

Summary

- Makes us more fronest (a bit)
- Avoids forbidden regions in a Frequentist way
- Not easy to calculate
- Has to be done separately for each value of \mathcal{B}
- Can lead to 2-tailed limits where youdon't want to claim a discovery
- Weird effects for $\mathcal{N}=0$; larger \mathcal{B} gives lower (=better) upper Cimit

Maximum Likelihood and Confidence Levels

$\mathfrak{M L}$ estimator ((Large $\mathcal{N})$ has variance given by $\mathfrak{M V B}$

$$
\sigma_{\hat{a}}^{2}=V(\hat{a})=\frac{-1}{\left\langle\frac{d^{2} \ln L}{d a^{2}}\right\rangle}
$$

\mathcal{A} t peak $\mathcal{K}^{\ln L \approx L_{\max }+\left.\frac{(a-\hat{a})^{2}}{2} \frac{d^{2} \ln L}{d a^{2}}\right|_{a=\hat{a}} \text { For large } \mathcal{N}\left(\frac{d^{2} \ln L}{d a^{2}}\right)=\left.\frac{d^{2} \ln L}{d a^{2}}\right|_{a=\hat{a}}}$ $\mathfrak{L n} \mathcal{L}$ is a parabola (\mathcal{L} is a Gaussian)

$$
\ln L=L_{\max }-\frac{(a-\hat{a})^{2}}{2 \sigma_{\hat{a}}^{2}}
$$

Falls by $1 / 2$ at $\quad a=\hat{a} \pm \sigma_{\hat{a}}$
Falls by 2 at $\quad a=\hat{a} \pm 2 \sigma_{\hat{a}}$
Slide 18

$\mathfrak{M V} \mathcal{B}$ example

\mathcal{N} Gaussian measurements: estimate μ

$$
P\left(x_{i} ; \mu\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}
$$

$\operatorname{Ln} \mathcal{L}$ given $6 y-\sum_{i} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}-N \ln (\sigma \sqrt{2 \pi})$

Differentiate twice writ μ

Take expectation value - 6 ut it's a constant Invert and negate: $\quad V(\hat{\mu})=\frac{\sigma^{2}}{N}$

Another $\mathcal{M V B}$ example

\mathcal{N} Gaussian me asurements: estimate σ $\mathcal{L n} \mathcal{L}$ still given $6 y-\sum_{i} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}-N \ln (\sigma \sqrt{2 \pi})$
Differentiate twice writ σ

$$
-\sum_{i} \frac{3\left(x_{i}-\mu\right)^{2}}{\sigma^{4}}+\frac{N}{\sigma^{2}}
$$

Take expectation value $\left.\left\langle x_{i}-\mu\right)^{2}\right\rangle=\sigma^{2} \forall i$
Gives $-\frac{2 N}{\sigma^{2}}$
Invert and negate : $\quad V(\hat{\sigma})=\frac{\sigma^{2}}{2 N}$

ML for small \mathcal{N}

ln \mathcal{L} is not a parabola

Argue: we could (invariance) transform to some a'for which it is a parabola
We could/should then get limits on a'using standard $\mathcal{L}_{\text {max }}-1 / 2$ technique
These would translate to limits on a These limits would be at the values of a for which $\mathcal{L}=\mathcal{L}_{\max }$ - $^{-1 / 2}$

Multidimensional ML

- L is multidimensional Gaussian

For 2-d 39.3% lies within 1σ i.e. witfin region bounded by

$$
\mathcal{L}=\mathcal{L}_{\text {max }} x^{-1 / 2}
$$

For 68% need $\mathcal{L}=\mathcal{L}_{\text {max }}-1.15$

Construct region(s) to taste using numbers from integrated χ^{2} distribution

Confidence Intervals

- Descriptive
- Frequentist
- Feldman-Cousins technique
- Baye sian
- Maximum Likelifood
- Standard
- Asymmetric
- Multidimensional

