Statistics for HEP

Roger Barlow
Manchester University

Lecture 4: Confidence Intervals

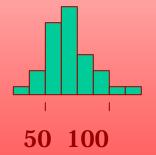
The Straightforward Example



Apples of different weights

Need to describe the distribution

$$\mu = 68g$$
 $\sigma = 17 g$



All weights between 24 and 167 g (Tolerance)

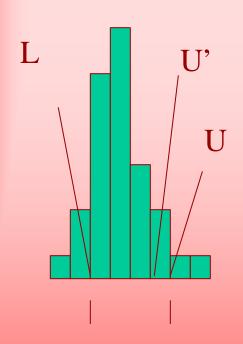
90% lie between 50 and 100 g

94% are less than 100 g

96% are more than 50 g

Confidence level statements

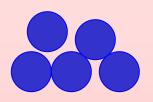
Confidence Levels



- Can quote at any level
 (68%, 95%, 99%...)
- Upper or lower or twosided (x<U x<L L<x<U)
- Two-sided has further choice

(central, shortest...)

The Frequentist Twist



Particles of the same weight

Distribution spread by measurement errors

What can we say about M?

$$\mu = 68$$
 $\sigma = 17$

$$\sigma = 17$$

"M<90" or "M>55" or "60<M<85" @90% CL

These are each always true or always false

Solution: Refer to ensemble of statements

Frequentist CL in detail

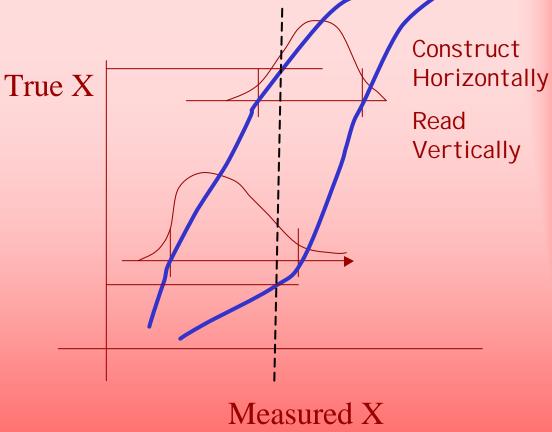
You have a meter: no bias, Gaussian error 0.1.

For a value X_T it gives a value X_M according to a Gaussian Distribution X_M is within 0.1 of X_T 68% of the time X_T is within 0.1 of X_M 68% of the time Can state X_M -0.1
 X_T
 X_T

Confidence Belts

For more complicated distributions it isn't quite so easy

But the principle is the same



Coverage

Think about: the difference between a 90% upper limit and the upper limit of a 90% central interval.

"L<x<U" @ 95% confidence (or "x>L" or "x<U")

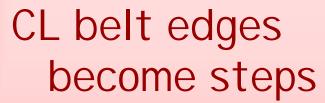
This statement belongs to an ensemble of similar statements of which at least* 95% are true

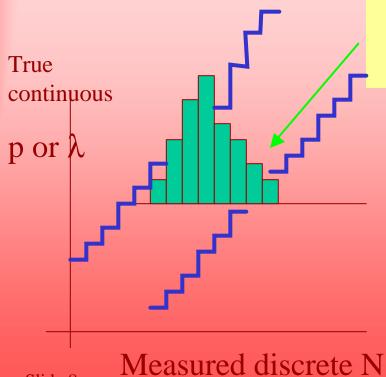
95% is the coverage

This is a statement about U and L, not about x.

*Maybe more. Overcoverage EG composite hypotheses. Meter with resolution ≤ 0.1

Discrete Distributions





Slide 8

May be unable to select (say) 5% region

Play safe.

Gives overcoverage

Binomial: see tables

Poisson

		Upper			Lower	
	90	95	99	90	95	99
0	2.3	3	4.61			
1	3.89	4.74	6.64	0.11	0.05	0.01
2	5.32	6.3	8.41	0.53	0.36	0.15
3	6.68	7.75	10.05	1.1	0.82	0.44

Given 2 events, if the true mean is 6.3 (or more) then the chance of getting a fluctuation this low (or lower) is only 5% (or less)

Problems for Frequentists

Weigh

object+container with some Gaussian precision

Get reading R

 $R - \sigma < M + C < R + \sigma @68\%$

 $R-C-\sigma < M < R-C+\sigma @68\%$

E.g. C=50, R=141, σ =10

81<M<101 @68%

E.g. C=50, R=55, σ =10

-5 < M < 5 @68%

E.g. C=50, R=31, σ =10

-29 < M < -9 @68%

Poisson: Signal + Background

Background mean 2.50

Detect 3 events:

Total < 6.68 @ 95%

Signal<4.18@95%

Detect 0 events

Total < 2.30 @ 95%

Signal < -0.20 @ 95%

These statements are OK.
We are allowed to get 32% / 5% wrong.
But they are stupid

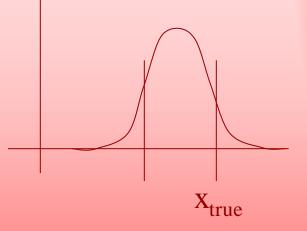
Bayes to the rescue

$$P(Theory \mid Data) = \frac{P(Data \mid Theory)}{P(Data)} P(Theory)$$

Standard (Gaussian) measurement

- No prior knowledge of true value
- No prior knowledge of measurement result
- P(Data|Theory) is Gaussian
- P(Theory | Data) is Gaussian

Interpret this with Probability statements in any way you please



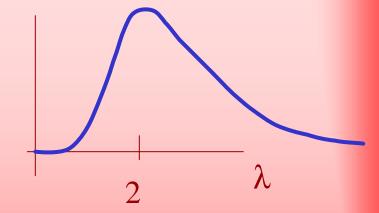
Gives same limits
as Frequentist
method for simple
Gaussian

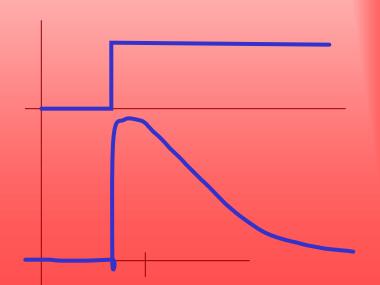
Bayesian Confidence Intervals (contd)

Observe (say) 2 events $P(\lambda;2) \propto P(2; \lambda) = e^{-\lambda} \lambda^2$ Normalise and interpret

If you know background mean is 1.7, then you know λ>1.7

Multiply, normalise and interpret





Bayes: words of caution

Taking prior in λ as flat is not justified Can argue for prior flat in In λ or $1/\sqrt{\lambda}$ or whatever

Good practice to try a couple of priors to see if it matters

Feldman-Cousins Unified Method

Physicists are human I deal Physicist

- 1. Choose Strategy
- 2. Examine data
- 3. Quote result

Real Physicist

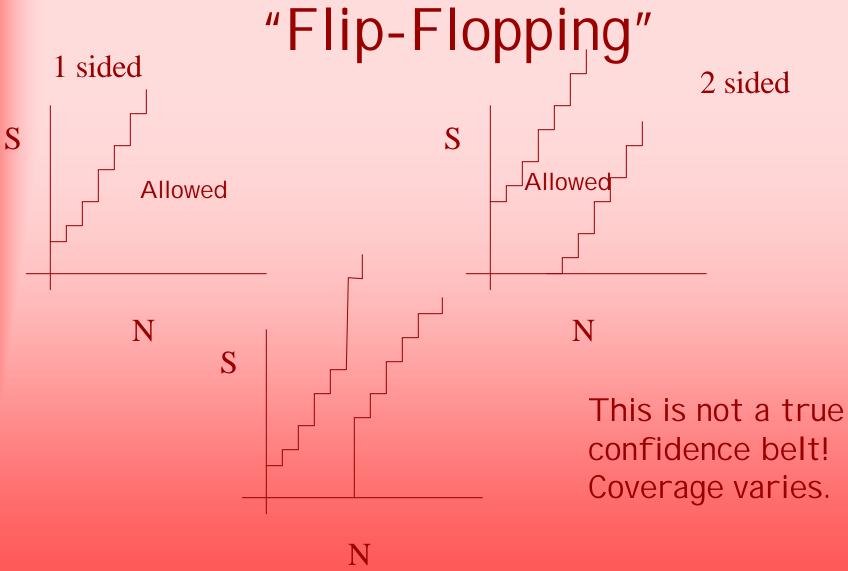
- 1. Examine data
- 2. Choose Strategy
- 3. Quote Result

Example:

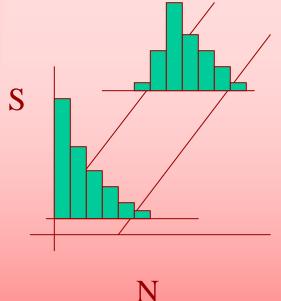
You have a background of 3.2

Observe 5 events? Quote one-sided upper limit (9.27-3.2 = 6.07@90%)

Observe 25 events? Quote two-sided limits



Solution: Construct belt that does the flip-flopping



For 90% CL

For every S select set of N-values in belt

Total probability must sum to 90% (or more): there are many strategies for doing this

Crow & Gardner strategy (almost right):

Select N-values with highest probability

→ shortest interval

Better Strategy

N is Poisson from S+B
B known, may be large
E.g. B=9.2,S=0 and N=1
P=.1% - not in C-G band
But any S>0 will be worse

To construct band for a given S:

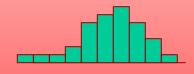
For all N:

Find P(N;S+B) and

P_{best}=P(N;N) if (N>B) else P(N;B)

Rank on P/P_{best}

Accept N into band until $\Sigma P(N;S+B) \ge 90\%$



Fair comparison of P is with best P for this N

Either at S=N-B or S=0

Feldman and Cousins Summary

- Makes us more honest (a bit)
- Avoids forbidden regions in a Frequentist way

- Not easy to calculate
- Has to be done separately for each value of B
- Can lead to 2-tailed limits where you don't want to claim a discovery
- Weird effects for N=0; larger B gives lower (=better) upper limit

Maximum Likelihood and Confidence Levels

ML estimator (large N) has variance given by MVB $\mathbf{s}_{\hat{a}}^2 = V(\hat{a}) = \frac{-1}{\left\langle \frac{d^2 \ln L}{da^2} \right\rangle}$

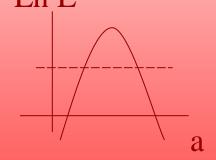
At peak
$$\ln L \approx L_{\text{max}} + \frac{(a-\hat{a})^2}{2} \frac{d^2 \ln L}{da^2} \bigg|_{a=\hat{a}}$$
 For large $N \left\langle \frac{d^2 \ln L}{da^2} \right\rangle = \frac{d^2 \ln L}{da^2} \bigg|_{a=\hat{a}}$

Ln L is a parabola (L is a Gaussian)

$$\ln L = L_{\text{max}} - \frac{(a - \hat{a})^2}{2s_{\hat{a}}^2}$$

Falls by $\frac{1}{2}$ at $a = \hat{a} \pm \mathbf{s}_{\hat{a}}$

Falls by 2 at
$$a = \hat{a} \pm 2\mathbf{s}_{\hat{a}}$$



Slide 18

MVB example

N Gaussian measurements: estimate μ

$$P(x_i; \mathbf{m}) = \frac{1}{\mathbf{s}\sqrt{2\mathbf{p}}} e^{-(x_i - \mathbf{m})^2/2\mathbf{s}^2}$$

Ln L given by $-\sum_{i} \frac{(x_{i} - \mathbf{m})^{2}}{2\mathbf{s}^{2}} - N \ln(\mathbf{s}\sqrt{2\mathbf{p}})$

Differentiate twice wrt μ = $\frac{N}{s^2}$

Take expectation value – but it's a constant Invert and negate: $V(\hat{\mathbf{m}}) = \frac{\mathbf{S}^2}{N}$

Another MVB example

N Gaussian measurements: estimate σ

Ln L still given by
$$-\sum_{i} \frac{(x_{i} - \mathbf{m})^{2}}{2\mathbf{s}^{2}} - N \ln(\mathbf{s}\sqrt{2\mathbf{p}})$$

Differentiate twice wrt σ

$$-\sum_{i}\frac{3(x_{i}-\mathbf{m})^{2}}{\mathbf{s}^{4}}+\frac{N}{\mathbf{s}^{2}}$$

Take expectation value $\langle (x_i - \mu)^2 \rangle = \sigma^2 \forall i$ Gives $-\frac{2N}{s^2}$

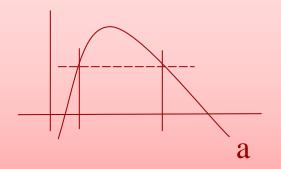
Gives
$$-\frac{2N}{s^2}$$

Invert and negate:

$$V(\hat{\mathbf{s}}) = \frac{\mathbf{s}^2}{2N}$$

ML for small N

In L is not a parabola



Argue: we could (invariance) transform to some a' for which it is a parabola

We could/should then get limits on a using standard L_{max}-½ technique

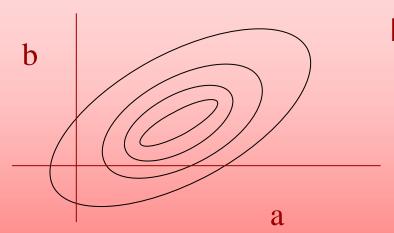
These would translate to limits on a

These limits would be at the values of a for which $L = L_{max} - \frac{1}{2}$

So just do it directly

Multidimensional ML

L is multidimensional Gaussian



For 2-d 39.3% lies within 1σ i.e. within region bounded by $L=L_{max}-\frac{1}{2}$

For 68% need $L=L_{max}-1.15$

Construct region(s) to taste using numbers from integrated χ^2 distribution

Confidence Intervals

- Descriptive
- Frequentist
 - Feldman-Cousins technique
- Bayesian
- Maximum Likelihood
 - Standard
 - Asymmetric
 - Multidimensional