

# LHC experimental data: From today's Data Challenges to the promise of tomorrow

B. Panzer – CERN/IT, F. Rademakers – CERN/EP,

P. Vande Vyvre - CERN/EP

Academic Training CERN



### Outline

- Day 1 (Pierre VANDE VYVRE)
  - Outline, main concepts
  - Requirements of LHC experiments
  - Data Challenges
- Day 2 (Bernd PANZER)
  - Computing infrastructure
  - Technology trends
- Day 3 (Pierre VANDE VYVRE)
  - Trigger and Data acquisition
- Day 4 (Fons RADEMAKERS)
  - Simulation, Reconstruction and analysis
- Day 5 (Bernd PANZER)
  - Computing Data challenges
  - Physics Data Challenges
  - Evolution



### Outline

- Day 1 (Pierre VANDE VYVRE)
  - Outline, main concepts
  - Requirements of LHC experiments
  - Data Challenges
- Day 2 (Bernd PANZER)
  - Computing infrastructure
  - Technology trends
- Day 3 (Pierre VANDE VYVRE)
  - Trigger and Data acquisition
- Day 4 (Fons RADEMAKERS)
  - Simulation, Reconstruction and analysis
- Day 5 (Bernd PANZER)
  - Computing Data challenges
  - Physics Data Challenges
  - Evolution





- Outline of this series
- Main concepts
- Requirements of the LHC experiments
  - Trigger @ LHC
  - Data acquisition @ LHC
  - Data storage @ LHC
- Data Challenges
  - Evolutions of online and offline computing fabrics
  - Motivations of data challenges





- Outline of this series
- Main concepts
- Requirements of the LHC experiments
  - Trigger @ LHC
  - Data acquisition @ LHC
  - Data storage @ LHC
- Data Challenges
  - Evolutions of online and offline computing fabrics
  - Motivations of data challenges

#### **Overall view of the LHC experiments.**

























#### Multi-level trigger system

Reject background Select most interesting collisions Reduce total data volume



CERN Academic Training 12-16 May 2003

P. Vande Vyvre CERN-EP



### Data acquisition





P. Vande Vyvre CERN-EP



### **Offline packages**

|                        | Software<br>Development tools |
|------------------------|-------------------------------|
| Users applications     |                               |
| Physics simulation     |                               |
|                        | Software<br>framework         |
| Data format            |                               |
| Data visualization     |                               |
| Distributed access     |                               |
| Mass Storage<br>System |                               |







- Outline of this series
- Main concepts
- Requirements of the LHC experiments
  - Trigger @ LHC
  - Data acquisition @ LHC
  - Data storage @ LHC

#### Data Challenges

- Evolutions of online and offline computing fabrics
- Motivations of data challenges



#### LHC experimental data: from today's Data Challenges to the promise of tomorrow (1)

 The LHC experiments constitute a challenge for electronics, data acquisition, processing, and analysis.

| CERN                                  | Trigger @ LHC (1)   |                            |                                      |  |  |  |
|---------------------------------------|---------------------|----------------------------|--------------------------------------|--|--|--|
|                                       | # Trigger<br>Levels | Rate F<br>Level Tr<br>(Hz) | irst<br>igger                        |  |  |  |
| ALICE                                 | 4                   | Pb-Pb<br>p-p               | 6x10 <sup>3</sup><br>10 <sup>3</sup> |  |  |  |
| ATLAS                                 | 3                   | L 1<br>L 2                 | 10 <sup>5</sup><br>2x10 <sup>3</sup> |  |  |  |
| CMS                                   | 2                   | L 1                        | 10 <sup>5</sup>                      |  |  |  |
| LHCb                                  | 3                   | L 0<br>L 1                 | 10 <sup>6</sup><br>4x10⁴             |  |  |  |
| CERN Academic Training 12-16 May 2003 |                     | 23                         | P. Vande Vyvre CERN-EP               |  |  |  |





P. Vande Vyvre CERN-EP

| CERN                                                  | DAQ @ LHC (1) |                        |                          |                        |
|-------------------------------------------------------|---------------|------------------------|--------------------------|------------------------|
|                                                       |               | Event                  | Readou                   | ıt                     |
|                                                       |               | Size                   | (HLT inp                 | ut)                    |
|                                                       |               | (Byte)                 | (Events/s.)              | (GB/s)                 |
| ALICE                                                 |               |                        |                          |                        |
| Magnet                                                | Pb-Pb         | 5x10 <sup>7</sup>      | <b>2x10</b> <sup>3</sup> | 25                     |
| Men Camera<br>Res Camera<br>Res Camera<br>Participant | рр            | 2x10 <sup>6</sup>      | 10 <sup>2</sup>          | 1                      |
|                                                       |               |                        |                          |                        |
| And a             |               | <b>10</b> <sup>6</sup> | 2x10 <sup>3</sup>        | 10                     |
| CMS                                                   |               | <b>10</b> <sup>6</sup> | <b>10</b> <sup>5</sup>   | 100                    |
| LHCb                                                  |               | 2x10 <sup>5</sup>      | 40x10 <sup>4</sup>       | 4                      |
| CERN Academic Training 12-16 May 2003                 |               | 25                     |                          | P. Vande Vyvre CERN-EP |





## Mass Storage @ LHC

|                                       |             | Readout<br>(HLT output)<br>(Events/s.) (MB/s) |             | Data archived<br>Total/year<br>(PBytes) |
|---------------------------------------|-------------|-----------------------------------------------|-------------|-----------------------------------------|
| ALICE                                 | Pb-Pb<br>pp | 2x10 <sup>2</sup><br>10 <sup>2</sup>          | 1250<br>200 | 2.3                                     |
| ATLAS                                 | Pb-Pb<br>pp | 10 <sup>2</sup>                               | 300<br>100  | 6.0                                     |
| CMS                                   | Pb-Pb<br>pp | 10 <sup>2</sup>                               | 100<br>100  | 3.0                                     |
| LHCb                                  |             | 2x10 <sup>2</sup>                             | 40          | 1.0                                     |
| CERN Academic Training 12-16 May 2003 |             |                                               | 27          | P. Vande Vyvre CERN-EP                  |



## Rates & Bandwidths @ LHC





#### LHC experimental data: from today's Data Challenges to the promise of tomorrow (2)

- The LHC experiments constitute a challenge for electronics, data acquisition, processing, and analysis.
- This challenge has been addressed by many years of R&D activity during which prototypes of components or subsystems have been developed.



## "R&D humanum est" (2)



CERN Academic Training 12-16 May 2003



### Outcome of R&D

- Design and implementation of hardware components
  - TTC system for the trigger distribution
- Design and implementation of software packages
  - ROOT package
- Proof of concept of major concepts
  - Positive recommendation of using a communication switch for the event building based on tests with ATM. Different technologies considered today (Gigabit Ethernet, Myrinet).
- Positive recommendation of technologies
  - Object Oriented (OO) programming for the LHC software.
- None or few negative recommendations but some technologies have not been adopted by experiments
  - OO database for the storage of raw data
  - Usage of Windows for physics data processing



#### LHC experimental data: from today's Data Challenges to the promise of tomorrow (3)

- The LHC experiments constitute a challenge for data acquisition, processing, and analysis.
- This challenge has been addressed by many years of R&D activity during which prototypes of components or subsystems have been developed.
- The present generation of prototypes used for the LHC data acquisition and computing infrastructures are based on commodity components.



<sup>©</sup> Intel corp.



### Chip key parameters





#### Memory capacity









### Networking technology





## Moore's law: myth and reality (1)

- Observation by G. Moore in 1965 when working at Fairchild
  - "Cramming more components onto integrated circuits", Electronics Vol. 38 Nb 8, April19, 1965
  - "Complexity of minimum cost semiconductor component had doubled every year".
  - Cost per integrated component ≈ 1/number of components integrated But yield decreases when components added Minimum cost at any point in time
- In 1975, prediction that doubling every 2 years
  - G. Moore co-founded Intel
  - His law became the Intel business model
  - Initially applied to memory chips, then to processors
- Interpretation and evolution of Moore's law
  - In the 1980's:  $\Rightarrow$  doubling of transistors on a chip every 18 months
  - In the 1990's:  $\Rightarrow$  doubling of microprocessor power every 18 months
- Subject of debate in the semiconductor industry. However...
  - Intel: in 1971 the 4004 had 2250 transistors, in 2000 the PIV had 42 Millions
  - Exponential evolution over 30 years

## Moore's law: myth and reality (2)





#### LHC experimental data: from today's Data Challenges to the promise of tomorrow (4)

- The LHC experiments constitute a challenge for data acquisition, processing, and analysis.
- This challenge has been addressed by many years of R&D activity during which prototypes of components or subsystems have been developed.
- The present generation of prototypes used for the LHC data acquisition and computing infrastructures are based on commodity components.
- This prototyping phase is culminating now with an evaluation of the prototypes in large-scale tests ("Data Challenges").



## **Online Systems Evolution**

- Dramatic evolution thanks to chip integration:
  - Electronics more and more sophisticated and intelligent
  - Data multiplexing, filtering, compression and formatting on chip
  - Electronics migrate from racks to detectors
  - Decrease of number of electronics slots needed in standard racks
- Dramatic increase of the DAQ bandwidth needed
- The rack of the year 2000 is a PC !







## **Computing Center Evolution**

- Large scientific computing centers:
  - No more mainframes and specialized networks
  - Massive transition to computing farms
- For HEP experiments, the computing centre is providing "online services"
  - Physics data archives
  - Computing power factory
  - File repository
- With the GRID, the online will not be limited to the experimental area: the world will be online !
  - Virtual access to the control room
  - Fast and remote access to the experimental data
- The computing center is not offline any longer



## **Building Blocks**

- Commodity is (almost) unique by definition
- Massive move to commodity in online and offline
  - Identical or similar building blocks to build the fabrics
  - Processing power: PCs based on Intel or compatible processors
  - Operating system: Linux
  - Networking: Gigabit Ethernet
  - Storage
    - Transient: IDE-based disks
    - Permanent: not (yet ?) commodity
- Opportunity to use the same test bed for several activities



## Why do we need Data Challenges ?

- More and more requirements to online systems
  - DAQ and HLT systems becoming larger and larger
  - Similar to a computing center
- System made of 100s of boxes from different manufacturers
  - Integration work transferred from computer manufacturer to farm integration teams
  - Need to test the system at large
- Buy as late a possible
  - Large integration work starting at the installation time  $\Rightarrow$  large risk
- System = Hw + Sw
  - Scaling and/or combination effects
  - Combined system testing as early as possible



## **Data Challenges**

- "Challenge":
  - An accusation, reproach
  - The act of calling to account
  - A summons to fight, to single combat or duel
  - A difficult or demanding task, one seen as a test of one's abilities
- Data Challenge
  - Yearly exercise
  - Hardware and software
  - Online, offline, computing center
  - "Here and now"



P. Vande Vyvre CERN-EP



P. Vande Vyvre CERN-EP

### **Computing Data Challenges**





### Conclusions

- The LHC experiments constitute a challenge for data acquisition, processing, and analysis.
- Many years of R&D
  - Recommendations
  - Prototypes of components or subsystems have been developed
- LHC data acquisition and computing will massively use commodity components
  - Moore's law
  - Adequate performances of commodity products
- Combined large-scale tests in "Data Challenges"



### Tomorrow

- Day 1 (Pierre VANDE VYVRE)
  - Outline, main concepts
  - Requirements of LHC experiments
  - Data Challenges

#### Day 2 (Bernd PANZER)

- Computing infrastructure
- Technology trends
- Day 3 (Pierre VANDE VYVRE)
  - Data acquisition
- Day 4 (Fons RADEMAKERS)
  - Simulation, Reconstruction and analysis
- Day 5 (Bernd PANZER)
  - Computing Data challenges
  - Physics Data Challenges
  - Evolution