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From Raw Data to Physics Paper
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Day One Proton-Proton Physics with the ALICE
Central Detector

P. Giubellino, 5. Kiselev, W. Klempt, A. Morsch, G. Paic, J-P. Revol
and K. Safarik

| Introduction

From the Technical Proposal onwards the proton-proton programme was considered an
integral part of the ALICE experiment. Al the present stage we feel it is important 1o
review the scope of that programme with a specific focus. Le. we want to discuss the
possibilities that ALICE will have in the first few months of LHC rumning, to make
efficient use of the LHC proton beams in order to:

1. provide first insights into pp physics in a new energy domain (Vs = 14 TeV) far
higher than that available today (Vs =2 TeV at the Tevalron). to study sofl hadronic
physics and its gradual evolution 1o the better understood perturbative QCD {pQCLY)
regime. In this respect it is useful to recall that the important contribution of UAD (o

mininnms hine mhucice fome mainlu Peaon tha conieal datastar shamboe can T1_141

CERN Academic Training 12-16 May 2003 3 Fons Rademakers, CERN-EP



How it iIs Done

Raw data tapes (Just once)
(Hit channels,..)

Data summary tapes \

Reconstruction < (Energy deposits, tracks,..)

(Many times)

;NSNS N

Physics plots

J
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(Analysis specifc values) > Analysis
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\ What Needs to be Done

Alice event: 0, Run:0

Nparticles = 5191 Nhits = 110290 ¢ Calibrate Signa|S
¢ Find patterns

¢  Fitfor particle
measurements

¢ Recognize underlying event
features

¢ Extract physics quantities

Now do this 107 times
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What Needs to be Done
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' Varieties of Data Analysis

¢ Large scale production
m Reconstruction, selections, forming distributions

¢ Develop and test new algorithms
m Initially on small samples

¢ Monitor performance over time and space

¢ Study distributions in large number of events
Study one event to death
¢ Compare measurements and theory

4
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Complexity of the Problem



The LHC Detectors
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0

[€]] A Pb-PbEventin ALICE (/100

M Alice event: 0, Run:0
Top View |
Side View |
Front Viewl
All Views |
OpenGL |

X3D
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L —

Complexity of the Problem

Detectors:
~2 orders of magnitude more channels than today

Triggers must choose correctly only 1 event in every 400,000
High Level triggers are software-based

Computer resources
will not be available
In a single location
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Complexity of the Problem
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Major challenges associated with:
Communication and collaboration at a distance
Distributed computing resources
Remote software development and physics analysis
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LHC Analysis Software System

Re-processing New detector
3 per year calibrations

or understanding

Experiment-
Wide Activity
(10° events)

50 kSI2000sec/event

Trigger based and
Physics based
refinements

Ilterative selection

~20 Groups’ Once per month

Activity
(10° 2> 107 events)

~25 Individuals
per Group Different Physics cuts\ algorithms applied
Activity & MC comparison to data
(108 —108 events) ~1 time per day to get results

2GHz P4 CPU ~ 700 S12000
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LHC Analysis Software System
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Why We Need Distributed Computing

¢ The investment for LHC computing is massive

¢ The numbers for ALICE are
m 1.25 GB/s in HI mode
m ~1.5 PBJy of tape
= ~0.5 PB of disk
m ~1800 kSI95 (~70,000 PC2000)
m ~ 8MEuro of hardware

e \Without personnel + infrastructure and networking
m  Millions lines of code to develop and maintain for 20 years

¢ Politically, technically and sociologically it cannot be concentrated in

a single location

m  Countries will resist massive investments at CERN

m Competence is naturally distributed

m  Cannot ask to people to travel to CERN so often
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' The Distributed Challenge

¢ Managing a large distributed software project is a challenge
We are missing off-the-shelf tools and technologies

¢ But most importantly we are missing the models
m For developing the software
m For managing distributed resources

¢ Inthe following we will see what we are doing to face this challenge

2
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Software Methodologies



Software Development

¢ Inthe LEP era the code was 90% written in FORTRAN
m ~10 instructions, 50 pages!

¢ Inthe LHC era the code is in many cooperating languages, mainly
C++

m ~ 50 instructions, 700 pages — nobody understands it completely (B.Stroustrup)
m But also C#, Java, Perl, Python, php..., Web and GRID

¢ Users are heterogeneous, sparse and without hierarchical structure

= From very expert analysts to users, from 5% to 100% of time devoted to
computing

¢ People come and go with a very high rate

m  Programs have to be maintained by people who did not develop them
m Young physicists need knowledge they can use also outside physics

¢ And yet HEP software has been largely successful!
m  Experiments have not been hindered by software in their scientific goals
m GEANT3, PAW and ROQOT: in use since 20 years on all architectures and OS

¢ And yet we (as a community) have not used traditional SE
= Did we do something right?
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a

.

Aglle MGthOdOlogieS (aka SE Catching Up)

¢ SE response to HEP are the “Agile Methodologies”

Adaptive rather than predictive

People-oriented rather than process-oriented

As simple as possible to be able to react quickly

Incremental and iterative, short iterations (weeks)

Based on testing and coding rather than on analysis and design

¢ Uncovering better ways of developing software by valuing:

Individuals and interactions processes and tools
Working software huge documentation
Customer collaboration contract negotiation
Responding to change following a plan

That is, while there is value in the items on the right,
We value the items on the left more
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¢

2

Software Development Process

ALICE opted for a light core CERN offline team...

m Concentrate on framework, software distribution and maintenance

...plus 10-15 people from the collaboration

m  GRID coordination (Torino), World Computing Model (Nantes), Detector
Database (Warsaw)

A development cycle adapted to ALICE has been elaborated
m Developers work on the most important feature at any moment
m A stable production version exists
m Collective ownership of the code
m Flexible release cycle and simple packaging and installation

Micro-cycles happen continuously

2-3 macro-cycles per year
m Discussed & implemented at Offline meetings and code reviews
m Corresponding to major code releases
We have high-level milestones for technology and physics

m  Computing Data Challenges test technology and integration DAQ — Offline
m Physics Data Challenges test the Offline from the physics viewpoint
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Data Analysis Frameworks



HEP Software Evolution

Subroutines Classes
kernlib CLHEP
Packages Frameworks

hbook Histogramming

S Collaborating
Applications
PAW, Geant3 rAmeworks
: ROOT System
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Software Frameworks

¢ A framework is a collection of cooperating classes that implement a
(reusable) solution for a given problem domain

¢ Differences between frameworks and class libraries:

m Behavior versus protocol: Class libraries are collections of behaviors that you
can call when you need them. A framework provides also the protocol or set of
rules that govern the ways in which behaviors can be combined

m Don't call us, we'll call you: With a class library, the programmer writes
objects and calls their member functions. With a framework a programmer
writes code that overrides and is called by the framework. The framework
manages the flow of control among its objects

= Implementation versus design: With class libraries programmers reuse only
implementations, with frameworks they reuse design

¢ The scope of the framework evolves with the evolving needs and
understanding of the users
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¢

¢

Features of a Data Analysis Framework

Being able to support the full data analysis chain
m Raw data, DSTs, mini-DSTs, micro-DSTs

Being able to handle complex structures
m  Complete objects
m  Object hierarchies

Support at least the common (PAW) data analysis functionality

m Histogramming
m Fitting
= Visualization
GUI, object browsers and inspectors
m Extensive use of object dictionary and RTTI

Only one language
m C++

Better maintainable
m Use OOP

Make the system extensible
m Use OO framework technology
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The ROOT Framework

.

¢ The ROOT system is an Object Oriented
framework for large scale data handling
applications

m Written in C++

m Provides, among others,
e An efficient hierarchical OO database
e A C++ interpreter

e Advanced statistical analysis (multi dimensional histogramming,
fitting, minimization and cluster finding algorithms)

e Visualization tools
e And much, much more

m The user interacts with ROOT via a graphical user interface, the
command line or batch scripts

m The command and scripting language is C++, thanks to the embedded
CINT C++ interpreter and large scripts can be compiled and dynamically
loaded
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Root CORE classes

The ROQT Libraries

Base

|
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Over 650 classes

950,000 lines of code
CORE (10 Mbytes)
CINT (3 Mbytes)

Green libraries linked on
demand via plug-in manager
(only a subset shown)
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ROOQOT Statistics —
Distributions and Number of Users

| ROOT distribution statistics | Wed May 14 06:01:12 2003
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Examples of ROOT Graphics

| Examples of Surface options I
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The Experiment Frameworks



What Does a HEP Framework Do
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L —

AliRoot — The ALICE Framework

2

Development started in 1998

¢ More than 50 users participate in the development of AliRoot
from the detector groups

m 70% of the code developed outside, 30% by the core Offline team
m C++: 400KLOC + 225kLOC (generated) + macros: 77kLOC
m FORTRAN: 13kLOC (ALICE) + 914kLOC (external packages)
m Maintained on Linux (any version!), HP-UX, DEC Unix, Solaris
¢ Two packages to install (ROOT+AIIRoot)
m l-click-away install: download and make
m Less than 1 second to link (thanks to the use of shared libraries)
Installed on more than 30 sites

Fully interfaced to the AliIEn grid (see later)

¢ Single framework for simulation, reconstruction and
visualization

* o
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AliRoot Highlights

¢ AliRoot development highlights
m Attention to the requirements of large production and analysis
m Evolution to higher levels of abstraction for objects and procedures
= Whiteboard data communication
m Generic task handling
m Event merging framework
= New atomic file structure

¢ Large use of abstract interfaces

= Independence and modularity of the different detector modules
m Easy integration of new developments in evolving framework

¢ Full exploitation of the ROOT integrated framework
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AliIRoot Evolution Schema

Alice Offline Framework
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AlIRoot Layout

63| G4 FLUKA |

/)

AliRoot ARG

~» MEVSIM |

STEER > PYTHIAS |
—

[PM[,) [EMC;AL][TRE) ITS F>Hos]| [TOF}\[ZDC] RICH ]
\[iI'RUCT][CRTMSTART][FMD][MUON][TPCMRALIC?

ROOT

Structure of the framework reflects the ALICE experiment sub-structure

AlEN

STEER coordinates the cooperation between detectors
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Gaudi — ATLAS/LHCb Framework
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CMS Analysis Production Chain
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Simulation



ALICE Event/100

ALICE Detector complexity
similar to ATLAS and CMS

¢ GEANTS3
m Developed in 1981

m Still used by the majority
of experiments

¢ Geant4
m A huge investment

= Slow penetration in HEP
experiments

¢ FLUKA

m State of the art for
hadronic and neutron
physics

= Difficult to use for full
detector simulation

]
[ T

CEF
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The Virtual MC

G3 |— G3 transport]
— [ VMC » G4 |—» G4 transport
Code . )
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ROOT Geometrical Modeler

¢ The ROOT geometry package is intended as a framework to provide
the geometrical description of a detector, full tracking functionality
and additional tools to ease the building, checking and debugging of
a geometry. Main features:

Modeling
Visualization
Interactivity

Where am [?
Distance to boundary
Closest boundary
Persistency

¢ Started ~1 year ago as a common ALICE/ROQOT effort having Iin
mind the idea to run several MC’s with the same user code



Al L/SAT™

3 million volumes
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Distributed Computing and the GRID



Access to Resources

¢ Resources for HEP computing (CPU’s, disks and Mass Storage)
will be distributed

m  They will be concentrated in so-called regional centres

¢ The different centres will have to work as a single integrated system
providing
m Maximisation of the usage of the resources
m Redundancy and fault tolerance
m  Security
=  Maximum transparency of usage

¢ Physicists have realised the challenge of this already since few
years

m A study group (MONARC) has been put together already some years ago and a
model has been elaborated
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The Monarc Model

Lyon/ALICE
RAL/ALICE
USA

Tier 1 centre

622 MB/s 200 kSI95
300 TB disk

Robot

Catania

622 MB/s

622 MB/s 1500
MB/s

622 MB/s CERN/ALICE

Tier O+1 centre
800 kSI95
500 TB disk
Robot
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The Distributed Computing Model

¢ Basic principle

Every physicist should have in principle equal access to the data and to the
resources

¢ Sample assumptions

Raw data will be kept at CERN and Tier 1's
Reconstruction done at CERN and data shipped to Tierl1-2
Simulation done in the Tierl-2, data shipped to CERN

The Tierl-2 re-process data as many time as necessary
Users access data remotely

¢ The system will be extremely complex

Number of components in each site

Number of sites

Different tasks performed in parallel: simulation, reconstruction, scheduled
and unscheduled analysis
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The Challenge

¢ Bad news is that the basic tools are missing

Distributed resource management
Distributed namespace for files and objects
Distributed authentication

Local resource management of large clusters
Data replication and caching

WAN/LAN monitoring and logging

¢ Good news is that we are not alone
m All the above issues are central to the new developments going on in the US

and now in Europe under the collective name of GRID
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The Grid Concept

¢ Grid R&D has its origins in high-end computing & metacomputing,
but...

¢ In practice, the “Grid problem” is about resource sharing &
coordinated problem solving in dynamic, multi-institutional virtual
organizations

¢ Data is often the focus
m As opposed to classical numerically intensive simulations

¢ The analogy is with the power grid
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The Grid:
Blueprint for a New Computing Infrastructure

v Avalilable July 1998;

v ISBN 1-55860-475-8

v 22 chapters by expert authors G RI D

including Andrew Chien, Jack
Dongal‘l‘a, Tom DEFantl’ Edited by Ian Foster

and Carl Kessaliman

Andrew Grimshaw, Roch
Guerin, Ken Kennedy, Paul
Messina, Cliff Neuman, Jon
Postel, Larry Smairr, Rick
Stevens, and many others

http://www.mkp.com/grids
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The Grid Vision

The GRID: networked data

processing centres and
Researchers perform their "middleware” software as the
activities regardless “glue” of resources.
geographical location, interact
with colleagues, share and
access data

Scientific instruments and
experiments provide huge
amount of data
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EU Grid Projects

. & DataGRID

= o = Started on 1-01, 9.8M EU funding, 21 partners
= = Main CERN, PPARC, INFN, CNRS, NIKHEF, ESA

m Focus on middleware, test beds and applications, 90% HEP/LHC focussed
m Intensive collaboration with other Grid projects
e Europe: GridPP, INFN-Grid, CrossGrid, DataTAG

% e US: GriPhyN, PPDG, DTF, iVDGL

m Support similar activities in other sciences
GRID| Other EU projects: CrossGrid, DataTAG and, later, GRIDStart
Particle
Physicsp

INEN e

GriPhyN

DataTAG
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AlIEn a Lightweight GRID

¢ AliEn (http://alien.cern.ch ) is a lightweight alternative to full blown
GRID based on standard components (SOAP, Web services)

Distributed file catalogue as a global file system on a RDBMS

TAG catalogue, as extension

Secure authentication

Central queue manager ("pull" vs "push” model)

Monitoring infrastructure

C/C++/perl API

Automatic software installation with AliKit

The Core GRID Functionality !

¢ AliEn is routinely used in production for ALICE
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AlIEn Architecture

@GRID

Alkn

AliEn Core Components & services Interfaces

External software

User
Application

V.0O.
Packages

&
Commands

High level

IO

Low level
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Services (file
transport, sync)

SOAP

Service

File transport

File catalogue: global

file system on top of

relational database
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AlIEn Components

Authorisation
Service

DB Sync
Service

Secure authentication
service independent
of underlying
database

PROCESSE$

Central task queue
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ROOT and the AIEn Grid
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GANGA — Gaudi And Grid Alliance

Joint ATLAS and LHCDb Project

N
e ” 2| GANGA |[(m@
O Collective

: Histograms &
JobOptions Monitoring JREEII{eE]

Algorithms Results Grid
Services

GAUDI Program |{m)

Based on the concept of Python bus:
use different modules whichever are
required to provide full functionality of the
Interface use Python to glue this modules,
l.e., allow Iinteraction and communication
between them
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CMS Components and Data Flow lmés

Production system and data repositories Tier
\ 0/1/2
Vol v ! v 4
ORCA analysis farm(s) PIAF/Proof/.. RDBMS
(or distributed “farm’ using type analysis based data _
grid queueS) farm(s) .. warehxuse(s) Tier
ey 1/2

* ..
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31415
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data flow
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data flow

N
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Clarens - A CMS Grid Portal

¢ Grid-enabling the working environment for
physicists' data analysis

¢ Clarens consists of a server communicating
with various clients via the commodity XML-
RPC protocol. This ensures implementation
independence.

¢ The server will provide a remote API to Grid
tools:

0 The Virtual Data Toolkit: Object collection access
Data movement between Tier centres using GSI-FTP
CMS analysis software (ORCA/COBRA),
Security services provided by the Grid (GSI)

RPC

| http/https |||

No Globus needed on client side, only certificate

Current prototype is running on the Caltech proto-Tier2
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PROOF - Parallel ROOT Facility

¢ PROOF is a system for the interactive analysis of very
large sets of ROOT data files on a cluster of computers

¢ The main idea is to speed up the query processing by
employing parallelism

¢ In the GRID context, this model will be extended from a
local cluster to a wide area “virtual cluster”. The
emphasis in that case is not so much on interactive
response as on transparency

¢ With a single query, a user can analyze a globally
distributed data set and get back a “single” result

¢ The main design goals are:
m transparency, scalability, adaptability

CERN Academic Training 12-16 May 2003 60 Fons Rademakers, CERN-EP



D) == Parameters {mm=

RDB

‘Bring the KB
to the PB and
not the PB to

the KB

CERN Academic Training 12-16 May 2003

Selection

Procedure

Proc.C

Proc.C

Proc.C

Proc.C

Proc.C

\
\
|
|
|
I Local
I
CPU [
I
I
! Remote
|
CPU "
I
CPU :’
I
/
CPU ;
/
/
CPU 7
Vs
L -
61 Fons Rademakers, CERN-EP



PROQOF Scalability

PROOF Scalability | 8.8GB, 128 files /
3 8000 0/ [T T ——— 1 node: 325 s .
o - 32 nodes in parallel: 12 s
¥ 700000 :_ ................................................................ AN
H —
T -
> Euuuun :_ ...........................................................................................................
L -
5“0000 e 77
T T | SR AN A DO 32 nodes: dual Itanium II 1 GHz CPU’s,
- 2 GB RAM, 2x75 GB 15K SCSI disk,
3000 (/) SEE——G.TSI_— R AN ————— . 1 Fast E:th, 1 GBE|Eth nic (not used)
DT LT sk RO S S Each node has one copy of the data set
- (4 files, total of 277 MB), 32 nodes:
100000 F st | 8.8 GbYte in 128; files, 9 million events
u : | | | - I | | | | | | | | | | | | |- | | | | | I - | | | | | | | |
0 5 10 15 20 25 30 35
CPU's
CERN Academic Training 12-16 May 2003 62 Fons Rademakers, CERN-EP



Conclusions

¢ Analyzing the Peta Bytes of LHC data is an enormous
challenge and requires a large software and hardware
Infrastructure

¢ Modern OO software techniques are used to build the
offline analysis systems

¢ Data processing will be distributed world wide, not a
single site Is large enough to do it alone

¢ The GRID paradigm fits neatly into what we are trying
to do and we plan to make maximum use of it (and
help develop it along the way)

¢ To make sure the analysis chain is up to the task we
regularly run Data Challenges to test the capabilities of
the system
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