Lecture #5

Instrumentation and Safety

Instrumentation

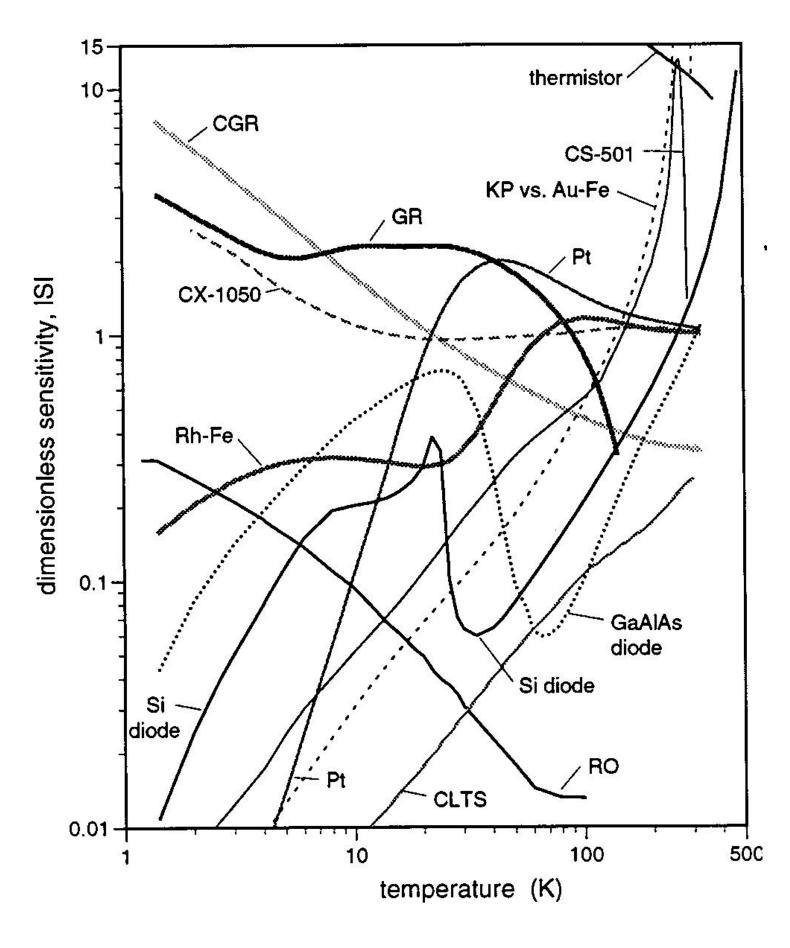
- Think about entire system not just sensor
- Things to consider about sensors
 - Accuracy
 - Time response
 - Sensor environment (e.g. presence of magnetic or radiation fields)
 - Precision what is the smallest change detected by the sensor?
 - Reliability
 - Cost

- Don't use more accuracy & precision than required
- Use commercially produced sensors whenever possible
- Install redundant sensors inside of cryostats whenever feasible

Temperature Measurement

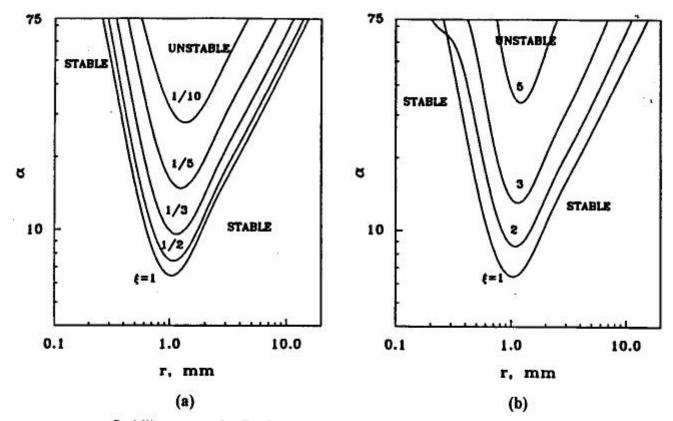
- Temperature Sensing Options
 - Silicon Diodes
 - Pt Resistors
 - Ge Resistors
 - Carbon Glass resistors
 - Cryogenic Linear Temperature Sensors

- Thermocouples


- Compare using dimensionless sensitivity $S_T = (T/V)(dV/dT)$
- Other Issues
 - Self Heating
 - Heat Sinking

32 gauge copper wire (0.032 mm²) between 300 K and 4 K requires 233 mm of heat sinking. Solution: use lower conductivity wire such as SS or manganin wherever possible

- Thermal emfs


Can be eliminated via polarity switching. $V = (V_+ - V_-)/2$

- Calibration

Pressure Measurement

- Room temperature where possible
- Problems with room temperature Pressure measurement
 - Thermal acoustic Oscillations
 - Time response
- Some cold pressure transducers exist

. Stability curves for TAOs in a helium system with a continuous temperature profile along the length of the tube. (a) $\xi \le 1$; (b) $\xi \ge 1$.

Flow Measurement

- Frequently done at room temperature
- Standard techniques work
 - Use correct materials & calibration
 - Hot wire anemometry doesn't work with He II

Level Measurement

- Superconducting level gauges for LHe service
- Differential pressure techniques
- Capacitive technique
- Self heating of sensors
- Floats (e.g. LN₂)

Safety

Warning: This is NOT a complete safety class

- Safety considerations should be designed in from the beginning of the experiment. Retrofits are time consuming & expensive
- Independent safety reviews are invaluable
- Understanding the unique safety issues associated with cryogenics is vital
- Safety concerns apply to both large and small systems

Over Pressurization Hazards

• Large volume expansion when going from a cryogenic liquid to 300 K gas means large pressure rises are possible

Table 5-3 Change in volume from liquid at
normal boiling point

to ambient temperature gas at 1 atmosphere

Substance	V _{gas} / V _{liquid}
Helium	701
Para hydrogen	788
Neon	1341
Nitrogen	646
Argon	779
CO ₂	762
Oxygen	797

It takes 1000 atm to maintain LHe density at 300 K

The solution is to <u>always</u> install relief devices

- Redundant devices should be used. Typically relief valve + burst disc
- The device should be set to open at or below the MAWP of the vessel
- Valves should be sized for worst case scenarios
- Valves should be tested & certified before installation
- Ensure that there are no trapped volumes. Remember – valves may leak or be operated incorrectly and cryogenic systems may warm up unexpectedly
- Do not put shut off valves between system and reliefs
- Ask What if ? questions

Asphyxiation Hazards

Inert gases can displace oxygen from an area resulting in rapid unconsciousness & death Without Warning

Oxygen content (volume %)	At rest symptoms and effects
15–19	Possible impaired coordination; may induce early symptoms in persons with lung, heart, or circulatory problems.
12-15	Deeper respiration, faster pulse, and impaired judgment, coordination, and perception.
10-12	Further increase in respiration depth and rate, lips blue, poor coordination, and judgment.
8-10	Nausea, vomiting, ashen face, mental failure, fainting, unconsciousness.
6–8	4-5 minutes, all recover with treatment; 6 minutes, fatal in 25 to 50% of cases; 8 minutes, fatal in 50 to 100% of cases.
46	Coma in 40 seconds and then convulsions, breathing failure, and death.

Anything below 19.5% is considered oxygen deficient

а — не

To mitigate this hazard

- Always do an ODH analysis before hand.
 - What will the O₂ level go to if all the cryogens are suddenly boiled off?
 - What will the O₂ level go to under normal boil off?
 - Are you depending on regular ventilation? How do you ensure it stays on?
 - What happens in a power failure?
- Commercial ODH monitors are available and properly installed provide a great deal of additional safety. Hand held devices are also available
- ODH can be a problem for small systems as well depending on their location

• Storage of large amounts of compressed gas can also pose a ODH hazard

Hydrogen Safety

- Hydrogen is extremely flammable
 (4 75 % by volume in air)
- Ignition energy is 0.02 mJ
- 47 l of LH₂ ~ 8 kg of TNT

Recent strategies at SLAC:

- The system was designed so that in all credible accident scenarios, all hydrogen was vented safely into the outside air away from people and buildings.
- A hazardous atmosphere detection (HAD) system was installed that continuously monitored the building air for the presence of hydrogen.

- If hydrogen was detected the system would:
 - Sound an evacuation alarm,
 - Turn off all electrical sources near the experiment
 - Close the hydrogen supply valves
 - Turn on high speed ventilation fans
 - Notify the fire department.
- No open flames, cutting, welding, or grinding is allowed in the experimental hall once hydrogen is present
- The entire hydrogen system was leak checked and the detection system was thoroughly tested.
- The design of the hydrogen system and its safety components was reviewed both by a SLAC safety committee and an external committee of hydrogen safety experts.