

M. Dracos Institut des Recherches Subatomique Strasbourg

Contents

- Solar neutrino problem
- Neutrino history
- Quantum mechanics and neutrino oscillations
- Experimental situation
- Future projects

Solar neutrinos

M. Dracos IReS/CNRS-ULP

Energy of solar neutrinos

Photons and Neutrinos

- The photons take about 1 million years to come at the sun surface (and 8 min. to reach the earth).
- The neutrinos take few sec. to come at the sun surface (and 8 min. to reach the earth).

neutrinos good probe of what happens at the heart of the sun

Homestake Solar Neutrino Detector and solar neutrino problem

- Large tank of C₂Cl₄ (cleaning fluid) in Homestake mine (South Dakota),
- Uses reaction $v_e + {}^{37}CI \rightarrow {}^{37}Ar + e^{-}$,
- Count Argon atoms produced, expected about 1 a day,
- Started experiment 1968 Ray Davis- Nobel prize 2002.

Found only 1/3 as many Argon atoms as expected!

M. Dracos IReS/CNRS-ULP

Experimental Results

Knowing how many neutrinos the proton-proton chain produces, the expected number of neutrinos to be detected by the experiment can be predicted (standard solar model - SSM).

Solar neutrino problem (lasted more than 20 years)

Radiochemical experiments

 First one ever used to detect solar neutrinos - Davis-Pontecorvo reaction:

 $V_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$

• or the more sensitive one (which has confirmed the previous experiment results): $v_a + {}^{71}Ga \rightarrow e^- + {}^{37}Ge$

(Threshold at 233 keV, dominant p-p reaction)

- Produced isotopes are radioactive with not too long lifetime they are periodically extracted and counted (non on-line experiment),
- > No information on time of interactions or neutrino direction.

What neutrinos are?

+bosons carrying the interactions

- elementary particles,
- neutral (no electric charge),
- interacting only through weak interaction,
- they have a massive charged partner,
- without mass (this is what the particle Standard Model assumes)?

Main sources of neutrinos

•<u>Solar neutrinos</u> : 2 10^{38} v/s \rightarrow 40 billions v/s/cm² on earth \rightarrow 400000 billions v/s/human (<20 MeV).

•<u>Universe</u> :

- Big-Bang : $330 \text{ v/cm}^3 (0.0004 \text{ eV} \rightarrow 2000 \text{ km/s} \text{ if } m_v = 10 \text{ eV/c}^2).$
- Stars : 0.000006 v/cm^3 .
- Supernovae $: 0.0002 \text{ v/cm}^3.$
- •Earth radioactivity : 50 billions v/s/human.
- A CONTRACTOR OF THE SECOND
- •<u>Nuclear reactors</u> : 10-100 billions v/s/human (1-10 MeV).
- •<u>Human body</u> : 340 millions v/jour (20 mg de potassium 40, β –decay).

A brief history of neutrino

1886: Pierre Becquerel discovers radioactivity

- 1897: J.J.Thomson (and others) discover the electron
- **1902:** Pierre and Marie Curie discover that β -rays are electrons
- **1914 :** Lise Maitner, Otto Hahn and James Chadwick measure the energy spectra of the β -rays

Two body decay

1913-1930: Puzzle of β decay

Continuous spectrum of b particles (electrons)!

Dec 1930: A Desperate Remedy

Pauli's letter of the 4th of December 1930

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a **desperate remedy** to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call <u>neutrons</u>, which have spin 1/2 and obey the exclusion principle and which further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of

the neutron and the electron is constant...

I agree that my remedy could seem incredible because one should have seen those neutrons very earlier if they really exist. But only the one who dare can win and the difficult situation, due to the continuous structure of the beta spectrum, is lighted by a remark of my honoured predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's well better not to think to this at all, like new taxes". From now on, every solution to the issue must be discussed. Thus, dear radioactive people, look and judge. Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back.

Your humble servant

"I have done something very bad today by proposing a particle that cannot be detected; it is something no theorist should ever do." *W.Pauli*₁₅

v history...

1933 Enrico Fermi develops the β -decay theory (weak interaction) and names the Pauli's "neutron" "neutrino".

(James Chadwick had discovered the neutron in 1932)

intermediate vector boson (IVB, analogue to photon in electromagnetic interaction)

Heisenberg uncertainty principle and virtual particles

1933 : Hans Bethe and Rudolf Peierls

 $\sigma_{vN} \approx 10^{-10} \sigma_{eN}$

(*N* for nucleon) cross section= 10^{-44} cm²

The beginning of a 26 year quest than a light year (Fermi: "I offer a case of champagne to whom will detect the first neutrino")

first cross-section calculations (probability of interaction)

cross-section very very weak!!!

One needs either 10¹⁶ km of water to absorb a neutrino, or a lot of neutrinos (mean free path longer than a light year of lead).

1953-56-58: Fred Reines et Clyde Cowan detect the first neutrino interactions at the Savannah River nuclear power plant

v history...

1960 : Tsung Dao Lee, Chen Nin Yang, Bruno Pontecorvo, Melvin Shwartz, ... π and μ decays to produce intense neutrino beams at accelerators.

1962 : Leon Lederman, Melvin Schwartz, Jack Steinberger discover v_{μ}

1968: Homestake (R. Davis), something wrong with solar neutrinos

2000 : DONUT experiment at FermiLab discovers v_{τ}

Trying to find a solution to the solar neutrino problem

• If neutrinos are massive:

- States participating in weak interactions (flavour eigenstates):
- States with well defined masses (mass matrix eigenstates):

Lepton mixing and Quantum Mechanics

 "Known" neutrinos are combinations of mass eigenstate neutrinos, e.g., for electron neutrinos:

$$\left|\nu_{e}\right\rangle = U_{e1}\left|\nu_{1}\right\rangle + U_{e2}\left|\nu_{2}\right\rangle + U_{e3}\left|\nu_{3}\right\rangle$$

• For all neutrinos we can write:

$$\begin{pmatrix} V_{e} \\ V_{\mu} \\ V_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} V_{1} \\ V_{2} \\ V_{3} \end{pmatrix}$$

unitary mixing matrix

Maki-Nakagawa-Sakata matrix

- change of basis,
- *U* is the transformation operator/matrix,
- operator/matrix,
 the hypothetical v₁, v₂, v₃ have unique masses and are the most fundamental neutrino states.

U-matrix properties

• Unitarity (*UU*⁺=*I*): $\langle V_{\alpha} | V_{\beta} \rangle = \delta_i^j$ (=0 for $i \neq j$, =1 for i = j)

 $\alpha,\beta=e,\mu,\tau$

$$U_{\alpha 1}^{*}U_{\alpha 1} + U_{\alpha 2}^{*}U_{\alpha 2} + U_{\alpha 3}^{*}U_{\alpha 3} = 1$$

(e.g $U_{e1}^{*}U_{e1} + U_{e2}^{*}U_{e2} + U_{e3}^{*}U_{e3} = 1$)
 $U_{\alpha 1}^{*}U_{\beta 1} + U_{\alpha 2}^{*}U_{\beta 2} + U_{\alpha 3}^{*}U_{\beta 3} = 0$ for $\alpha \neq \beta$

– or in condensed notation:

 $U_{ej}^{*}U_{ej} = U_{\mu j}^{*}U_{\mu j} = U_{\tau j}^{*}U_{\tau j} = 1$ $U_{ej}^{*}U_{\mu j} = U_{ej}^{*}U_{\tau j} = U_{\mu j}^{*}U_{\tau j} = 0$

Rotation between states

Final mixing matrix

$$\begin{pmatrix} V_e \\ V_{\mu} \\ V_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_2 \end{pmatrix}$$

Yes but, how can we use all that to explain the solar neutrino problem?

How neutrinos propagate with time?

According to Quantum Mechanics

$$\left| \mathcal{V}_{j}(t) \right\rangle = e^{-iHt/\hbar} \left| \mathcal{V}_{j}(0) \right\rangle$$

(H: hamiltonian)

Solutions of Schrödinger equation

For 3 neutrinos with definite energy and mass:

The Schrödinger equation:

$$i\frac{d}{dt}\begin{pmatrix} V_1\\V_2\\V_3\end{pmatrix} = H\begin{pmatrix} V_1\\V_2\\V_3\end{pmatrix}$$

$$i\frac{d}{dt}\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = H_f \begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix}$$

for mass states

with:

for flavour states

 $H_f = UHU$

How neutrinos propagate with time?

$$\left| v_{\alpha}(0) \right\rangle = \sum_{k=1}^{3} U_{\alpha k}^{*} \left| v_{k}(0) \right\rangle \qquad \alpha = e, \ \mu, \ \tau$$

time evolution of flavour states: $\left| V_{\alpha}(t) \right\rangle = \sum_{k=1}^{3} U_{\alpha k}^{*} e^{-iE_{k}t} \left| V_{k} \right\rangle$ $(\hbar = 1)$

with energy: $E_{k} = \sqrt{E_{k}}$

$$\overline{p^2 + m_k^2} \Box p + \frac{m_k^2}{2p}$$
 with: $p > m_k$

can be expressed as a function of flavour neutrino states $|V_k\rangle$

$$\left|\nu_{\alpha}(t)\right\rangle = \sum_{\beta} A_{\nu_{\alpha} \to \nu_{\beta}}(t) \left|\nu_{\beta}\right\rangle$$

where: $A_{\nu_{\alpha} \to \nu_{\beta}}(t) = \sum_{k=1}^{5} U_{\beta k} e^{-iE_{k}t} U_{\alpha k}^{*}$ the amplitude of $\nu_{\alpha} \to \nu_{\beta}$ transitions at the time t (or at distance L)

 $|\nu_{\beta}\rangle$

Transition probability

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| A_{\nu_{\alpha} \to \nu_{\beta}}(t) \right|^{2} = \left| \sum_{k=1}^{3} U_{\beta k} e^{-iE_{k}t/\hbar} U_{\alpha k}^{*} \right|^{2}$$

- $U^*_{\alpha k}$: the amplitude to find the neutrino mass eigenstate $|v_k\rangle$ with energy E_k in the state of flavour neutrino $|v_{\alpha}\rangle$,
- $e^{-iEkt/\hbar}$ gives the time evolution of the mass eigenstate,
- $U_{\beta k}$: the amplitude to find the flavour neutrino state $|v_{\beta}\rangle$ in the mass eigenstate neutrino $|v_{k}\rangle$.

Using the unitarity condition:

$$\sum_{k=1}^{3} U_{\beta k} U_{\alpha k}^{*} = \delta_{\alpha \beta}$$

Transition probability

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \delta_{\alpha\beta} + \sum_{k=2}^{3} U_{\beta k} U_{\alpha k}^{*} \left[e^{-i\frac{\Delta m_{k1}^{2}L}{2E}} - 1 \right] \right|^{2}$$

with: $\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$

(the time has been replaced by the distance)

transition probabilities do not depend on particle masses but on squared mass differences

Finally, the transition probability depends on the elements of the mixing matrix, on 2 independent mass-squared differences and on the parameter L/E.

No transitions are observed when: $\Delta m_{k1}^2 L / E \Box = 1$

with Δm^2 given in eV², *L* in km and *E* in GeV

Probability as a function of the mixing angles

$$P(\nu_{\alpha} \xrightarrow{\alpha \neq \beta} \nu_{\beta}) = -4 \sum_{i>j} (U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(\frac{1.27 \Delta m_{ij}^{2} L}{E}\right) =$$

$$= -2 \sum_{i=1}^{3} \sum_{j=1, j\neq i}^{3} (U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j}) \sin^{2} \left(\frac{1.27 \Delta m_{ij}^{2} L}{E}\right) =$$

$$= -4 \begin{bmatrix} U_{\alpha 1} U_{\beta 1} U_{\alpha 2} U_{\beta 2} \sin^{2} \left(\frac{1.27 \Delta m_{12}^{2} L}{E}\right) + \\ U_{\alpha 1} U_{\beta 1} U_{\alpha 3} U_{\beta 3} \sin^{2} \left(\frac{1.27 \Delta m_{13}^{2} L}{E}\right) + \\ U_{\alpha 1} U_{\beta 1} U_{\alpha 3} U_{\beta 3} \sin^{2} \left(\frac{1.27 \Delta m_{13}^{2} L}{E}\right) + \\ U_{\alpha 2} U_{\beta 2} U_{\alpha 3} U_{\beta 3} \sin^{2} \left(\frac{1.27 \Delta m_{23}^{2} L}{E}\right) \end{bmatrix}$$

$$(\hbar c = 197 MeV fm)$$

$$(\hbar c = 107 MeV fm)$$

$$(\hbar c = 10$$

Oscillation Probability and approximations

$$P(v_{\alpha} \to v_{\beta}) = -4 \left[c_{12} \sin^2 \left(\frac{1.27 \Delta m_{12}^2 L}{E} \right) + c_{13} \sin^2 \left(\frac{1.27 \Delta m_{13}^2 L}{E} \right) + c_{23} \sin^2 \left(\frac{1.27 \Delta m_{23}^2 L}{E} \right) \right]$$

Let's assume: $\Delta m_{13} \approx \Delta m_{23} \equiv \Delta m$ $\Delta m_{12} \equiv \delta m$ $\Delta m \Box \delta m$

(justified by experimental results)

Let's consider two types of experiments:

08/0'

Case A – small L/E:
$$\sin^{2}\left(\frac{1.27 \,\delta m^{2} L}{E}\right) \approx 0$$

 $P(v_{\alpha} \rightarrow v_{\beta}) = -4(c_{13} + c_{23}) \sin^{2}\left(\frac{1.27 \,\Delta m^{2} L}{E}\right)$
not anymore sensitive to θ_{12} and δm
M. Dracos IReS/CNRS-ULP

Oscillation Probability

not anymore sensitive to Δm while the amplitude of the oscillation depends only on θ_{12}

Case A: small L/E

$$P(v_{\mu} \rightarrow v_{\tau}) \Box \cos^{4}\theta_{13} \sin^{2}2\theta_{23} \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$

$$P(v_{\mu} \rightarrow v_{e}) \Box \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$

$$P(v_{e} \rightarrow v_{\tau}) \Box \sin^{2}2\theta_{13} \cos^{2}\theta_{23} \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$

$$P(v_{e} \rightarrow v_{\tau}) \Box \sin^{2}2\theta_{13} \cos^{2}\theta_{23} \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$

$$(for \theta_{13}=0 \text{ only 2 flavours mixing})$$

$$rac{10}{2} \int_{0}^{0.6} \int_{0.4}^{0.6} \int_{0.2}^{0.6} \int_{0.4}^{0.6} \int_{0.6}^{0.6} \int_{0.4}^{0.6} \int_{0.6}^{0.6} \int_{0.6}^{0.6}$$

Case A: large L/E

$$P(v_e \to v_{\mu\tau}) = \cos^2 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{1.27\delta m^2 L}{E_{\nu}}\right) + 0.5 \sin^2 2\theta_{13}$$

Case of solar neutrinos

Oscillation parameters

mixing angles
$$\theta_{13}, \theta_{12}, \theta_{23}$$

mass differences $\Delta m_{13}, \Delta m_{23}, \Delta m_{12}$ (only 2 are free)

what can be varied by humans in order to study neutrino oscillations

Very often used: Oscillation length (length after which all neutrinos reappear): E_{ν}, L

$$\sin\left(\frac{1.27\Delta m^2 L}{E_v}\right) = \sin(\pi \frac{L}{L_{osc}})$$

Appearance and disappearance experiments

In a disappearance experiment one counts how many of the initial neutrinos V_{α} are left after passing a distance *L*:

In an appearance experiment one searches for neutrinos V_{β} in an initial beam of V_{α} :

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(\frac{1.27\Delta m^2 L}{E_{\nu}}\right)$$

Back to solar neutrino problem

Radiochemical experiments were only sensitive to v_e

Neutrino Oscillations and mixing matrix

Matrix MNSP (Maki, Nakagawa, Sakata, Pontecorvo) $1 \overline{\theta}_{23}$ $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \qquad c_{ij} = \cos \theta_{ij}, \ s_{ij} = \sin \theta_{ij}$ θ_{12} $= \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} & c_{22} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta_{CP}} s_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}} s_{12} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha_2/2} & 0 \\ 0 & 0 & e^{-i\alpha_3/2 + i\delta} \end{pmatrix}$ Majorana phases reactors solar, atmospheric, accelerators reactors accelerators **CP** violation

sensitive to CP violation if θ_{13} >0

To Make a Precision Measurement of Neutrino Properties

How do you design a neutrino experiment?

- An intense source of neutrinos (Reactors, sun, v-beams...)
- Right type and energy,
- The ability to do precise energy measurements.
- Large detectors at the optimal distances from the source,
- Distance from the neutrino source,
- Protection from cosmic rays (Deep Underground)

Neutrino experiments

Using:

- solar neutrinos (distance fixed, energy fixed), good for ($\Delta m_{12}^2, \theta_{12}$) measurement,
- atmospheric neutrinos (distance can vary, energy fixed), good for (Δm²₂₃, θ₂₃) measurement
- reactor neutrinos (distance can be tuned, energy fixed), good for (Δm_{13}^2 , θ_{13})
- accelerator neutrinos (distance can be tuned, energy can be tuned).

on top of that the experiment neutrino detection sensitivity has to be taken into account

Neutrino energy spectra

Confirmation of neutrino oscillations Super-Kamiokande detector

M. Dracos IReS/CNRS-ULP

Detection technique used at SK

Cerenkov radiation

Light emission only if the particle is faster than light in the crossed medium (radiator)

Cerenkov angle:

VP<VL

no light emission

light emission

(Q,p,m)

Light detection technique: Photomultipliers

08/07/2006

M. Dracos IReS/CNRS-ULP

Super Kamiokande Detector

Less efficient technique for solar neutrinos than Gallium and Chlorine but on-line experiment with directionality information.

Cleaning detector during filling - no radioactive dust allowed

M. Dracos IRe

Super-Kamiokande: Solar neutrinos

SNO

(Sudbury Neutrino Observatory)

Water detector with a

difference:

- 2 km underground
- ➤ 1000 tons D₂O
- ≻ 10⁴ 8" PMTs
- ➢ 6500 tons H₂O

> sensitive to all neutrino families

Canada

Atmospheric neutrinos

Atmospheric neutrinos and confirmation of oscillations SuperK

Atmospheric neutrinos and confirmation of oscillations

L/E Oscillation result

$Sin^2 2\theta_{13}$ and Reactor Experiments

Nuclear Reactors as a Neutrino Source

- Nuclear reactors are a very intense sources of \overline{v}_e deriving from the β -decay of the neutron-rich fission fragments.
- Each fission liberates about 200 MeV of energy and generates about 6 electron anti-neutrinos. So for a typical commercial reactor (3 GW thermal energy)

3 GW $\approx 2 \times 10^{21}$ MeV/s $\rightarrow 6 \times 10^{20} \overline{\nu}_{e}/s$

- The observable \overline{v} spectrum is the product of the flux and the cross section.
- The spectrum peaks at ~3.7 MeV.

CHOOZ detector

- Site: CHOOZ reactor, Ardennes (France)
- 2 cores: 2x4200 MW
- •Depth: 300 mwe
- 5 tons of liquid scintillator (gadolinium loaded)
- <L> ~ 1 km

5-ton target

08/07/2006

CHOOZ detector

future (>2008)

Reactor experiments

20 % of world nuclear power

KamLAND detector

- > external container filled with 3.2 ktons of water
- inner spherical container filled with 2 ktons of mineral oil
- inside a transparent baloon filled with 1 kt of liquid scintillator
- > 2100 photomultipliers to measure scintillation light
- located in Kamioka mine at depth of 1 km \succ

Proposed Reactor Neutrino Experiments

Combined results from all experiments

from solar neutrinos

$$\Delta m_{12}^2 = 8.2 + 0.6 \times 10^{-5} eV^2$$
$$\tan^2 \theta_{12} = 0.40 + 0.09 - 0.07$$

from atmospheric neutrinos and neutrino beams

 $1.9x10^{-3} < \Delta m_{23}^2 < 3.0x10^{-3} \text{ eV}^2$ $0.90 < \sin^2 2\theta_{23}$ @ 90% C.L.

from reactors

$$\sin^2 2\theta_{13} < 0.15$$

Long Base Line Experiments

MINOS Far Detector

 $V_{\rm e}$

Numi v_{μ} beam Fermilab-Minesota 730 km **disappearance experiment**

has just gave the first results...

 $\left|\Delta m_{32}^{2}\right| = 2.72_{-0.25}^{+0.38} (\text{stat}) \pm 0.13 (\text{stat}) \times 10^{-3} \text{ eV}^{2}$ $\sin^{2} 2\theta_{23} = 1.00_{-0.13} (\text{stat}) \pm 0.04 (\text{syst})$

CNGS v_{μ} beam CERN-Gran Sasso 732 km first appearance experiment

is starting now...

OPERA experiment

Target Tracker

Few of many pending questions

Future Neutrino Oscillation Projects

(mainly to discover $v_e \leftrightarrow v_u$ oscillation and measure θ_{13})

Super-Beams

~300 MeV ν_{μ} Neutrinos small contamination from ν_{e} (no K at 2 GeV!)

Super-Beam project at CERN

Neutrino Factory at CERN

Future Neutrino Facilities

Summary

- Quantum Mechanics predict particle oscillations,
- Neutrino oscillations established,
- Many questions pending like, absolute neutrino masses, why so small masses, how small is θ_{13} etc...,
- Future experiments will try to answer the main questions and probably make unexpected discoveries,
- Neutrino physics is very fascinating.

much more on neutrinos at neutrino oscillation industry: http://www.hep.anl.gov/ndk/hypertext/nuindustry.html
Is that all?

