Galaxy formation within the classical Big Bang Cosmology

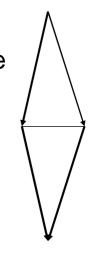
Bernd Vollmer
CDS, Observatoire astronomique
de Strasbourg

Outline

some basics of astronomy

• galaxies, AGNs, and quasars

 from galaxies to the large scale structure of the universe


the theory of cosmology

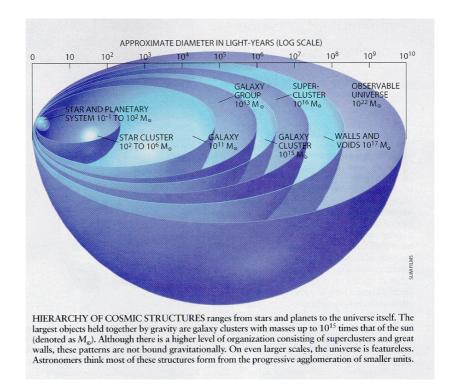
measuring cosmological parameters

structure formation

 galaxy formation in the cosmological framework

open questions

large


structure

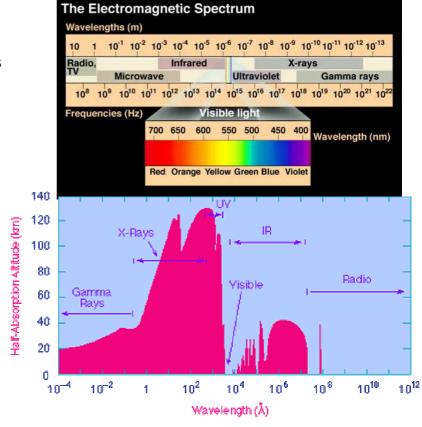
small structure

small structure

The architecture of the universe

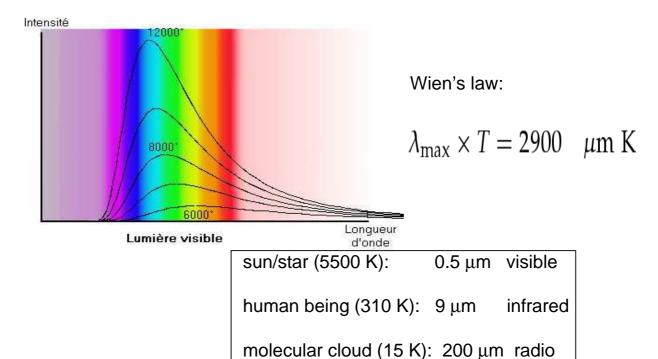
- Earth (~10⁻⁹ ly)
- solar system (~6 10⁻⁴ ly)
- nearby stars (> 5 ly)
- Milky Way (~6 10⁴ ly)
- Galaxies
 (>2 10⁶ ly)
- large scale structure (> 50 10⁶ ly)

How can we investigate the universe


Astronomical objects emit elctromagnetic waves which we can use to study them.

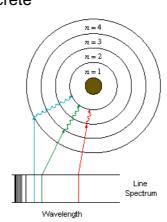
BUT

The earth's atmosphere blocks a part of the electromagnetic spectrum.


→

need for satellites

Back body radiation

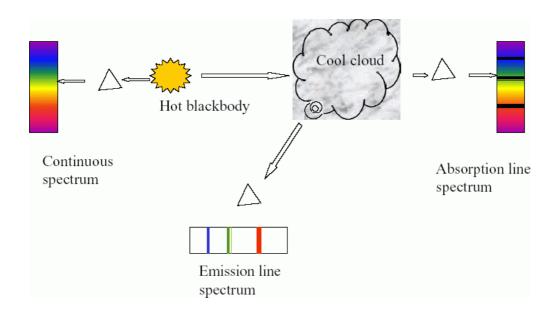

Opaque isolated body at a constant temperature

The structure of an atom

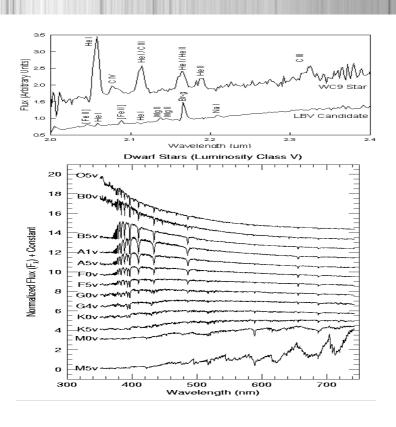
Components: nucleus (protons, neutrons) + electrons

Bohr's model: the electrons orbit around the nucleus, the orbits are discrete

n = 5
n = 4
n = 3
Série de Paschen

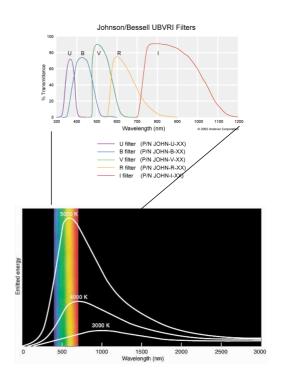

Série de Balmer

Série de Lyman


Bohr's model is too simplistic

quantum mechanical description

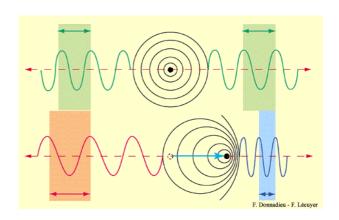
The emission of an astronomical object has 2 components: (i) continuum emission + (ii) line emission

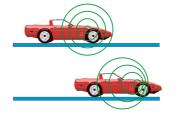


Stellar spectra

Observing in colors

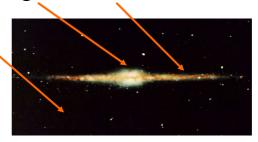
Usage of filters (Johnson): U (UV), B (blue), V (visible), R (red), I (infrared)

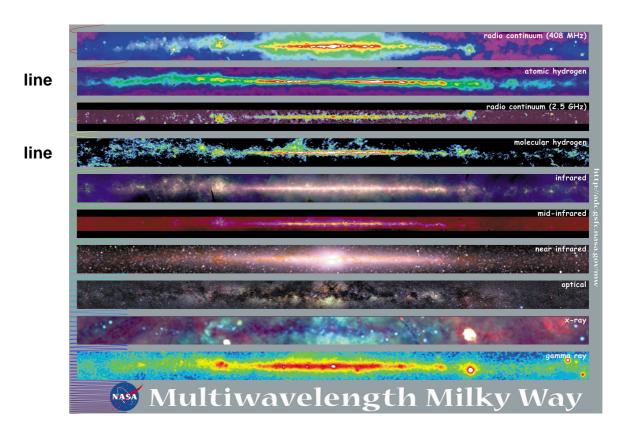

The Doppler effect


- Is the apparent change in frequency and wavelength of a wave which is emitted by a source moving relative to the observer
- For electromagnetic waves: approaching source: blueshifted emission
 receding source: redshifted emission

 $v/c = \Delta \lambda/\lambda$ \(\lambda\): wavelength

c: velocity of light


v: velocity of the sourve


The Milky Way galaxy

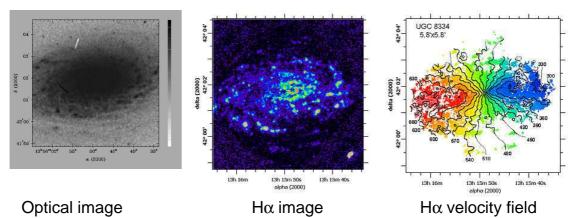
• ~10¹¹ stars: halo + bulge + disk



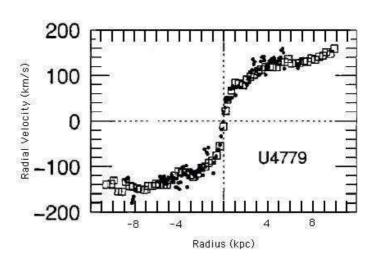
- diameter: ~10⁵ ly
- disk rotation velocity: 200 km/s
- Interstellar matter (ionized, atomic, and molecular): several 10⁹ solar masses
- dark matter

The Milky Way at different wavelengths

The Hubble sequence



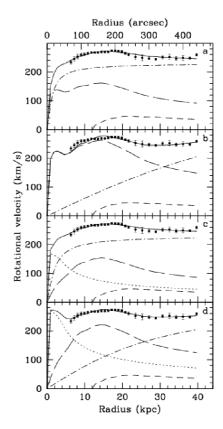
Galaxy dynamics


- Observations of the interstellar gas: optical lines (Hα) or radio lines (mm: CO, cm: HI)
- Doppler effect

Example: M63

The rotation curve

- Extraction of the radial velocities as a function of galactic radius
- Correction for the galaxy's inclination with respect to the image plane

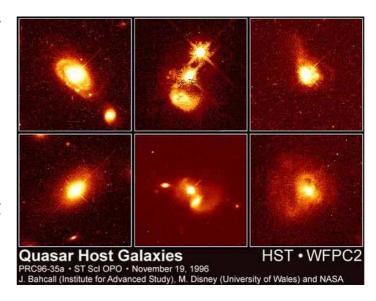

Decomposition of the rotation curve

- mMv²/R=mMG/R² -> v²=MG/R m: mass of a star, M: mass included within the radius R, v: rotation velocity, G: constant of gravitation, R: galactic radius
- mass components: bulge (...), disc (- - -), gas (-- -- --), dark matter (_._.)
- mass to light ratio (M/L) for the stars

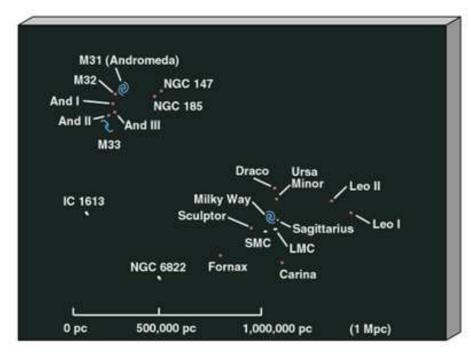
M/L >1 or the need for dark

→ matter

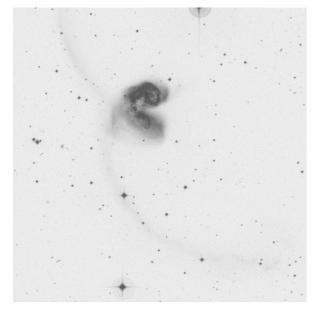
Typically M/L~10

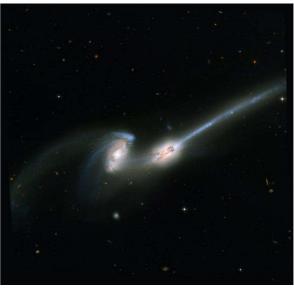

Galaxies with active galactic nuclei (AGN)

- Galaxies whose nucleus is brighter than the whole stellar disk
- Energy source: gravitation (black hole)


Quasars

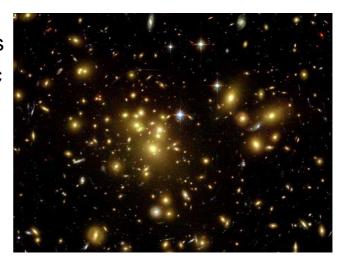
- « Quasi stellar objects » small compact objects
- very distant sources:
 « light from the edge of the universe »
- Class of AGNs
- Objects with the highest known luminosities


The local group


M/L ~100

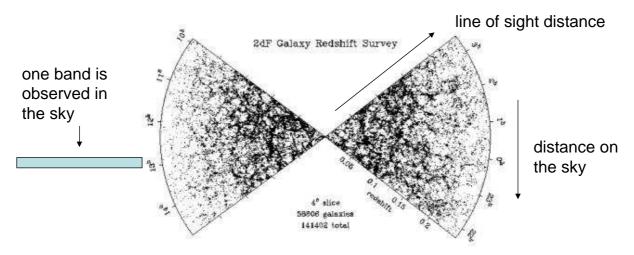
1 pc (parsec) ~ 3 ly

Galaxy evolution via gravitational interactions



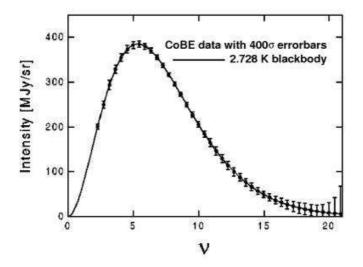
The antenna galaxies

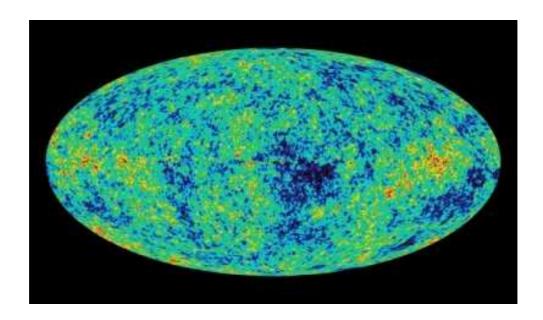
The mice


Galaxy clusters

- dimension: ~10 Mly
- more than 100 galaxies
- closest galaxy cluster in the northern hemisphere: Virgo cluster (distance: ~50 Mly)
 Abell 1689
- determination of M/L: velocity dispersion, X-rays from hot gas + hydrostatic equilibrium + gravitational lenses
- typically: M/L~300

Large scale distribution of galaxys


- distances > 10 Mly
- picture: large scale distribution has a foam or a web structure


The cosmic microwave background

- 1965: A. Penzias and A.W. Wilson observed an excess emission in the radio independent of position

 Nobel prize (1978)
- Perfect Black Body radiation
- Temperature T= 2.725 K

The 2D distribution of the CMB

WMAP CMB map

Note: the galactic foreground emission had to be removed

Outline

- some basics of astronomy
- galaxies, AGNs, and quasars
- from galaxies to the large scale structure of the universe
- the theory of cosmology
- measuring cosmological parameters
- structure formation
- galaxy formation in the cosmological framework
- open questions

large

structure

small structure

The basis of cosmology

ingredients:

- (i) theory of gravitation (general relativity)
- (ii) postulats giving rise to a relation between the topology of the universe and its energy-matter content
- (iii) cosmological principles

restricted relativity: 4D space-time

distance between two events at (t,x,y,z) and (t+dt, x+dx,y+dy,z+dz):

 $ds^2=c^2dt^2-(dx^2+dy^2+dz^2)$

which is invariant with respect to coordinate transformations path of a photon ds=0

without external forces (e.g. gravitation) particle follow a straight line

general relativity:

gravitation is no longer a force, but a property of space-time, which is not necessarily flat, but can have a curvature caused by gravitation $ds^2=g_{ii} dx^i dx^j$ where g_{ii} is the metric tensor

additional postulats:

- relation between matter-density and metric
- 2. energy-momentum tensor T_{ij} only contains first derivations of g_{ij}

formal

- 3. covariant derivation of T_{ij} is zero
- 4. at the limit of weak gravitation $\Delta\Phi=4\pi G\rho$ (Poisson's law)
 - --- Einstein's equation

Cosmological principle

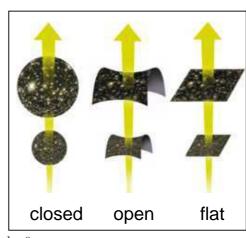
- 1.) there is a universal time such that $ds^2 = c^2 dt^2 dl^2$
- 2.) the spatial component of the universe is homogenuous and isotropic

$$dl^2 = B(r,t) dx^2$$
 where $B(r,t) = R^2(t) F(r)$
 $R(t)$ is a scale factor

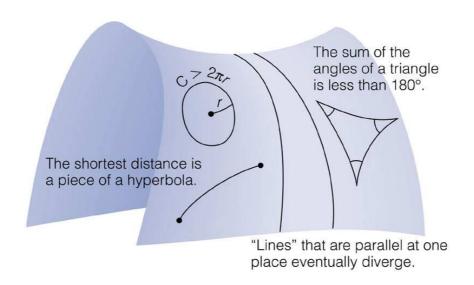
most general expression for F(r):

$$F(r)^2 = \frac{1}{(1 + \frac{k}{4}r^2)^2}$$
; $k = -1, 0, 1$

 \rightarrow Robertson-Walker metric

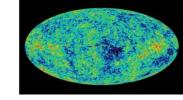

k=0: flat univers (euklidian);

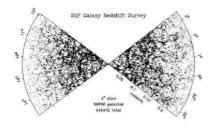
k=-1: open universe; k=1 closed universe


volume:

$$V_{k=0} = \frac{4}{3}\pi (Rr)^3$$
$$V_{k=1} \neq V_{k=0}$$

The Pythagorean theorem $(c^2 = a^2 + b^2)$ is only valid for k=0


Example: the case of an open universe (k=-1)


Copyright © 2004 Pearson Education, publishing as Addison Wesley

Justification of the cosmological principle

• Isotropy (structure is independent of direction): temperature variations in the cosmic microwave background (CMB): $\Delta T/T \sim 10^{-5}$

Homogeneity (translational invariance in 4D):
 quasar distribution, galaxy distribution at distances > 600 Mly

Consequences of the cosmological principle

1.) Hubble's law:

let us define a proper distance: $d_{pr} = \int c dt = R(t) f(r)$ \rightarrow proper distances change with time

radial velocity:

$$v_{\rm r} = \frac{\mathrm{d}(d_{
m pr}(t))}{\mathrm{d}t} = H(t)d_{
m pr}$$

this is Hubble's law where $H(t) = \frac{\dot{R}(t)}{R(t)}$ is the Hubble constant. definition: $H_0 = H(t_0)$

2.) redshift:

$$z = \frac{\lambda_0 - \lambda_e}{\lambda_e}$$

from $ds^2 = 0 \rightarrow$ for two maxima of a wave:

$$\int_{t_{\rm e}}^{t_0} \frac{c \mathrm{d}t}{R(t)} = \int_{t_{\rm e} + \delta t_{\rm e}}^{t_0 + \delta t_0} \frac{c \mathrm{d}t}{R(t)}$$

one can show that $\delta t_{\rm e}/R(t_{\rm e}) = \delta t_0/R(t_0)$; with $\delta t = \nu^{-1}$

$$z + 1 = R(t_0)/R(t)$$

in words: the redshift corresponds to the ratio of the scale factors

The deceleration parameter

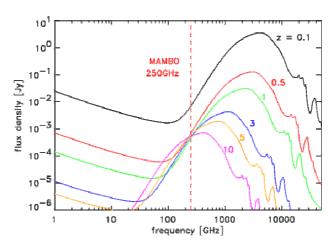
Taylor expansion of R(t):

$$R(t) = R(t_0) + (t - t_0) \left(\frac{\mathrm{d}R(t)}{\mathrm{d}t}\right)_{t=t_0} + \frac{1}{2}(t - t_0)^2 \left(\frac{\mathrm{d}^2R(t)}{\mathrm{d}t}\right)_{t=t_0} + \dots =$$

$$= R_0 \left[1 + H_0(t - t_0) + \frac{1}{2}H_0^2 q_0(t - t_0)^2 + \dots\right]$$

where
$$q_0 = -(\ddot{R}(t_0)R(t_0))/\dot{R}(t_0)^2$$
 is the deceleration parameter

Distances


- proper distance: $d_{\rm pr} = -c dt = -c dR/\dot{R}$
- comobile distance: $d_{\text{com}} = -c dt/R = -c dR/(R\dot{R})$
- luminosity distance: $d_{\rm L} = L/(4\pi l)^{\frac{1}{2}}$ where L is the absolute and l the apparent (measured) luminosity
- angular diameter distance: $d_A = D/\Theta$ where D is the intrinsic (proper) dimension and Θ the observed angular diameter

Cosmological dimming factor and K correction

for resolved sources in the local universe: the surface brightness of a source is independent of distance

for sources at cosmological distances: the observed surface brightness decreases with (1+z)-4 cosmological dimming

Flux of a galaxy at a redshift z: its spectrum is shifted and distorted (recall: observations ith filters)

Friedmann's model of the universe

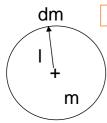
Robertson-Walker metric + Einstein's equation

assume a perfect fluid:

$$\ddot{R} = -\frac{4\pi G}{3}(\rho + \frac{3P}{c^2})R$$

$$\ddot{R} = -\frac{4\pi G}{3} (\rho + \frac{3P}{c^2}) R$$

$$\dot{R}^2 + kc^2 = \frac{8\pi G}{3} R^2 \rho$$


energy conservation:

$$\frac{\mathrm{d}}{\mathrm{d}R}[\rho c^2 R^3] + 3PR^2 = 0$$

now: assume an equation of state: $P = \omega \rho c^2$; $0 \le \omega \le 1$

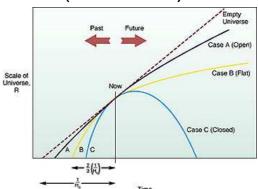
- $\omega = 0$: "dusty" matter-dominated universe $\rho = \rho_0 (1+z)^3$
- $\omega = \frac{1}{3}$: radiation dominated universe $\rho = \rho_0 (1+z)^4$

Newtonian view:

consider a sphere of mass m and radius l; acceleration of a particle located at the edge of the sphere:

$$\frac{\mathrm{d}^2 l}{\mathrm{d}t^2} = -\frac{Gm}{l^2} = -\frac{G}{l^2} \frac{4}{3}\pi l^3 \rho$$

assume a scaling law: $l/R = l_0/R_0$


$$\frac{1}{2}(\frac{l_0}{R_0}\dot{R})^2 = G\frac{4\pi}{3}\rho(\frac{l_0}{R_0}R)^2 + C$$

where $C = -K/s(\frac{l_0}{R_0}c)^2$ is proportional to the total energy

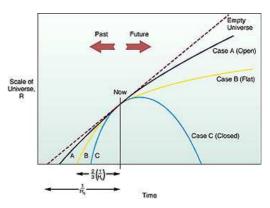
- $K=1 \rightarrow C < 0$ negative total energy \rightarrow possible collapse
- $K = -1 \rightarrow C > 0$ positive total energy \rightarrow ever lasting expansion
- $K = 0 \rightarrow C = 0$ zero total energy \rightarrow expansion at the escape velocity $(v=0 \text{ for } t\to \infty)$

The existance of a singularity: The Big Bang

- $d^2R(t)/dt < 0$
- dR(t)/dt > 0 : expanding universe (observed)
- → R(t) is concave curvature depends on the metric (via k)

singularity: R(t) →0 for t →0 → → → → → → → → Big Bang (due to initial conditions of an expanding homogenuous and isotropic universe)

The critical density of the universe


define a critical density: $\rho_{0c} = \frac{3H_0}{8\pi G}$

define $\Omega = \rho_0/\rho_{0c}$

one can show that

$$H_0^2(1 - \Omega_0) = -\frac{kc^2}{R_0^2}$$

if $\Omega_0 = 1 \rightarrow k = 0$ (flat euklidian universe)

the curvature of the universe depends on its energy-matter content

The Einstein-de Sitter universe

 $\Omega = 1$; $\omega = 0$: flat matter-dominated universe

- $\rho(t) = \frac{1}{6\pi G t^2}$
- $R(t) = R_0(\frac{t}{t_0})^{\frac{2}{3}}$
- $t = t_0(1+z)^{-\frac{3}{2}}$
- $H = \frac{2}{3t} = H_0(1+z)^{\frac{3}{2}}$
- $q_0 = \frac{1}{2}$
- $t_0 = \frac{2}{3H_0}$

The cosmological constant

A. Einstein wanted a stionnary universe most general form of Friedmann's equations:

$$\ddot{R} = -\frac{4\pi G}{3}(\rho + \frac{3P}{c^2})R + \frac{\Lambda}{3}R$$

$$\dot{R}^2 + kc^2 = \frac{8\pi G}{3}\rho R^2 + \frac{\Lambda}{3}R^2$$

let us define

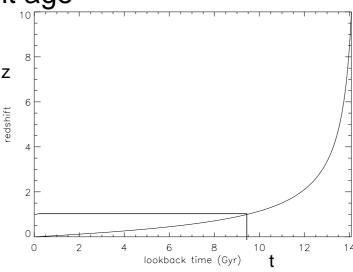
$$\Omega_{\Lambda} = \frac{\Lambda c^2}{3H_0^2}$$

for $\Omega_{\Lambda}=1 \to \text{length scale } L=\Lambda^{-\frac{1}{2}}\sim 5Gly.$ let us define: $\Omega_k=1-\Omega_{\rm m}-\Omega_{\Lambda}$ where $\Omega_{\rm m}$ corresponds to the former Ω_0

effect of the cosmological constant: additional driving of expansion

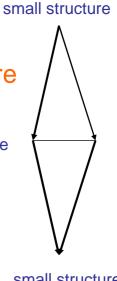
« dark energy »

The age and size of the Universe


size: maximum distance that a photon can travel

for the Einstein - de Sitter universe:

- age: $t_0 = \frac{2}{3H_0}$,
- size: $d_{\rm H}(t) = 3ct$

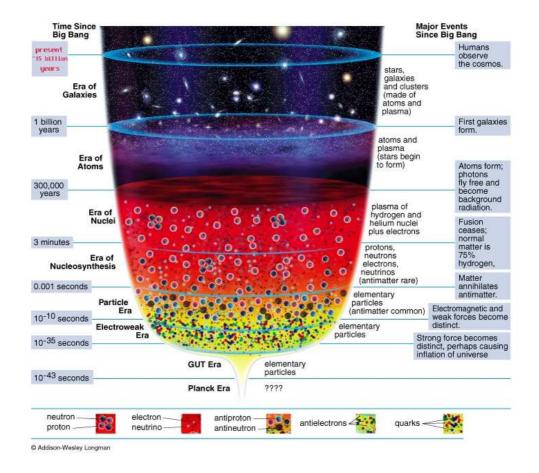

Redshift versus lookback time

- depends on cosmology
- at z=1 the age of the universe is less than half of its present age

Outline

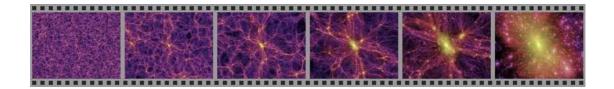
- some basics of astronomy
- galaxies, AGNs, and quasars
- from galaxies to the large scale structure of the universe
- the theory of cosmology
- measuring cosmological parameters
- structure formation
- galaxy formation in the cosmological framework
- open questions

large

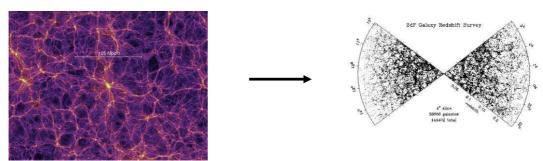

small structure

Measuring the cosmological parameters

- H₀: use standard candles (Cepheids, SNIa, Tully-Fisher etc.) and measure luminosity and redshift
- $\Omega_{\rm m}$: measure M/L (galaxies, groups, clusters)
- $\Omega_{\rm m}$ and Ω_{Λ} : luminosity and angular distance are affected; CMB => $\Omega_{\rm m}$ + Ω_{Λ} ~1 SNIa => $\Omega_{\rm m}$ ~0.3 and Ω_{Λ} ~0.7

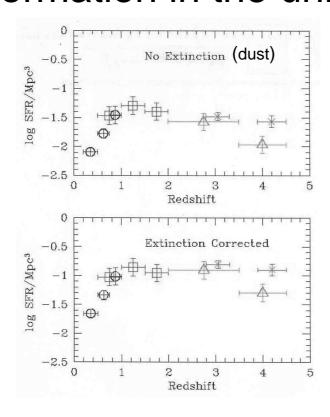

The horizon and flatness problem

- horizon: the largest causal angular distance is ~2°, but the CMB is isotropic everywhere
- flatness: evolution of $\Omega(t)$ shows that $\Omega(t)$ had to be exactly one at early times, why?
- solution: inflation (Guth 1981) => sudden expansion of the universe shortly after the Big Bang


Simulations of the formation of large scale structure

Ingredients: cold dark matter (non-collisional) + initial perturbation (CMB) + cosmology + gravitation (Poisson's equation) + gas/hydrodynamics (optional) + star formation (semi-analytical, optional)

Hierarchical structure formation

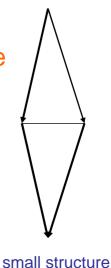

- small objects form first (dark matter halos)
- small objects merge to form larger objects
- simulated: dark matter, observed: baryonic matter => observational bias
- can reproduce many observations

simulations (mainly dark matter)

observations: galaxies

Star formation in the universe

Problems of hierarchical structure formation


- simulated spiral galaxies are too small;
 solution: feedback, e.g. galactic winds
- recent observations: massive galaxies exist already at high z (z>2)
 solution: « downsizing »: at high z the « action » (star formation) takes place in massive objects
- hierarchical structure formation predicts too many small objects (dwarf galaxies?)
 solution: epoque of reionization, feedback

Some open questions

- Quasars have already massive black holes; who was first, the galaxy or the black hole?
- What was the role of the first stars (population 3 stars without metals)?
- How do spiral galaxies form? Why do all spiral galaxies have an exponential disk?
- How does star formation work in detail?

Outline

- some basics of astronomy
- galaxies, AGNs, and quasars
- from galaxies to the large scale structure of the universe
- the theory of cosmology
- measuring cosmological parameters
- structure formation
- galaxy formation in the cosmological framework
- open questions

large

structure

small structure