
Acceleration of Cosmic Rays

One of the most intriguing problems in high energy
astrophysics is the mechanism by which high energy
particles are accelerated to ultrarelativistic energies.
The specific features of particle acceleration which we
have to account for are as follows:

1. A power-law energy spectrum for particles of all
types. The energy spectrum of cosmic rays and
the electron energy spectrum of many non-
thermal sources have the form :

dN(E)∝E−xdE,

where the exponent x lies in the range roughly
2.2-2.3. For the cosmic rays, x = 2.5 − 2.7 at
energies ∼ TeV, with slightly flatter spectra for
primary nuclei such as iron. The typical spectra
of radio-sources correspond to electron spectra
with x ≈ 2.6 with a scatter of about 0.4 about
this mean value. The continuum spectra of
quasars in the optical and X-ray wave-bands
correspond to x≈ 3.

2. The acceleration of cosmic rays to energies E ∼
1020eV.

3. The acceleration mechanism should result in
chemical abundances for the cosmic rays which
are similar to the cosmic abundances of the ele-
ments.

Figure 1. Spectrum of Cosmic Rays as a function of Energy.

1 The Fermi Acceleration - 2nd-Order process
The Fermi mechanism was proposed by Fermi in 1949
as a stochastic means by which particles colliding with
coulds in the interstellar medium could be accelerated
to high energies.

In Fermi’s original picture, charged particles are
reflected from magnetic mirrors associated with irregu-
larities in the Galactic magnetic field. The mirrors are

assumed to move randomly with typical velocity V ,
and Fermi showed that the particle gain energy statis-
tically in these reflections. If the particles only remain
within the acceleration region for some characteristic
time τesc, a power-law distribution of particle energies
is found.

Let’s assume that the collision between a particle and a mirror, or massive cloud, takes place
such that the angle between the initial direction of the particle and the normal to the surface of
the mirror is θ. Let us work out the change of energy of the particle in a single collision. We
suppose the cloud is infinitely massive so that its velocity is unchanged in the collision. The
centre of momentum frame is therefore that of the cloud moving at velocity V (γV = 1

1− V 2

c2

√ ).

1. Express the energy of a particle in the moving cloud’s frame, as a function of θ and γV ;
2. Write down the x-component of the relativistic 3-momentum in the CoM Frame px

′ ;
3. How is the particle’s energy transformed during the collision ? What about px

′ ?
4. Transforming back in the observer’s frame, find the energy after the collision E ′′ ;
5. Expand this expression assuming V

c
� 1 ;

6. We now have to average over all possible angles θ.
Because of scattering by hydro-magnetic waves or irregularities in the magnetic field, it is

likely that the particle is randomly scattered in pitch angle between encounters with the clouds.
There is a slightly greater probability of head-on encounters as opposed to the following colli-
sions. For simplicity, let us consider the case of a relativistic particle with v ≈ c. The probability
of collision at angle θ is proportional to γV

(
1 + V

c
cos θ

)
.

The probability of the pitch angle lying in the angular range [θ, θ + dθ] is pro-
portional to sinθdθ, so that averaging over all angles the expression found in 5. in
the limit v → c, you can express the average gain per collision in this case.
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This illustrate the famous result derived by Fermi
that the average increase in energy is only second
order in V

c
. It is also immediately apparent that this

result leads to an exponential increase in the energy of
the particles since the same fractional increase occurs
per collision.

Before looking at this part of the calculation a
little more deeply, let us complete the essence of
Fermi’s original argument. If the mean free path
between clouds along a field line is L, the time
between collisions is L

c cosϕ
, where ϕ is the pitch angle

of the particle with respect to the magnetic field direc-
tion. We need to average cosϕ over the pitch angle to
find the average time between collisions, which is just
2L

c
. Therefore, we find a typical rate of energy

increase :
dE
dt

=
4
3

V 2

cL
E = αE.

It is assumed that the particles remain in the acceler-
ating region for a characteristic time τesc. The diffu-

sion-loss equation for the particles is :

∂N
∂t

= Diffusion Term +
∂

∂E
[EnergyLoss(E)N(E)] −

N
τesc

+ Source Term.

We are interested in the steady-state solution, and
hence ∂N

∂t
= 0. We will not consider diffusion so that

the diffusion term is = 0, and since we assume there
are no sources, the source term is equal to 0. The
energy loss term is − dE

dt
=−αE. Therefore :

− d

dE
[αEN(E)] =

N(E)

τesc
.

Finally, :

N(E)∝E−x, ( � )

where x = 1 +
1

ατe s c
. Thus we have succeeded in

deriving a power-law energy spectrum.

2 Acceleration by 1st-Order Process
We can rewrite the essence of the Fermi acceleration
mechanism in a rather simple fashion if we let E =
βE0 be the average energy of the particle after one
collision and P the probability that the particle
remains within the accelerating region after one colli-
sion. Then, after k collisions, there are N = N0P

k par-
ticles with energies E = E0βk. If we eliminate k
between these quantities,

ln
(

N

N0

)

ln
(

E

E0

) =
ln P
ln β

⇒ N
N0

=

(
E
E0

)l n P

l n β

Therefore N(E)dE ∝ E
−1+

l n P

ln βdE. It is clear from this
formulation that we have again recovered a power law.
To make the equivalence between the first and the
second versions of Fermi acceleration complete, we see
from equation ( � ) and the definition of β that β =

1 +
α

M
, where α/M is the increment of energy per col-

lision and P is related to τesc.
In the Fermi mechanism α is proportional to (V /

c)2, because of the decelerating effect of the following
collisions. The original version of Fermi’s theory is
known as second order Fermi acceleration and is a
very slow process. We would do much better if there
were only head-on collisions. In this case the energy
increase is ΔE

E
∝ 2

V

c
, that is, first order in V

c
. This is

called first order Fermi acceleration.

A very attractive version of the first order Fermi
acceleration in the presence of strong shock waves was
also proposed.

To illustrate the basic physics of the acceleration
process, let’s consider the case of a strong shock, for
example, that caused by a supernova explosion, propa-
gating through the interstellar medium. A flux of high
energy particles is assumed to be present both in front
and behind the shock front. The particles are consid-
ered to be of very high energy, and so the velocity of
the shock is very much less than the velocities of the
high energy particles.

The key point about the acceleration mechanisms
is that the high energy particles hardly notice the
shock at all, since its thickness will normally be very
much smaller than the gyroradius of a high energy
particle. Because of turbulence behind the shock front
and irregularities ahead of it, when the particles pass
through the shock in either direction, they are scat-
tered so that their velocity distribution rapidly
becomes isotropic on either side of the shock front.
The key point is that the distributions are isotropic
with respect to the frames of reference in which the
fluid is at rest on either side of the shock.

Let us consider the case of a strong shock. This is
the case, for example, for the material ejected in
supernova explosions, where the velocities can be up
to about km/s, compared with the sound speed of the
interstellar medium, which is at most about 10 km/s.

In the case of a strong shock, the shock wave travels at a highly supersonic velocity U � cs,
where cs is the speed of the sound in the ambient medium. It is often convenient to transform
into the frame of reference in which the shock front is at rest, and then the upstream gas flows
into the shock front at velocity v1 = |U | (density ρ1) and leaves the shock front with a down-
stream velocity v2 (density ρ2).

1. Write the equation of continuity for the mass through the shock ; in the case of
a strong shock ρ2

ρ1
= γ +1

γ − 1
, where γ is the ratio of specific heats of the gas. Taking γ for a

monoatomic gas (or fully ionised gas), compute ρ2

ρ1
, and express v2 as a function of v1 ;
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Now let us consider the high energy particles ahead
of the shock. Scattering ensures that the particle dis-
tribution is isotropic in the frame of reference in which
the gas is at rest.

Let us consider the upstream particles first. The
shock advances through the medium at velocity U ,
but the gas behind the shock travels at a velocity 3

4
U

relative to the upstream gas. When a high energy par-
ticle crosses the shock front, it obtains a small
increase in energy of the order ΔE

E
∝ U

c
. The particles

are then scattered by the turbulence behind the shock
front, so that their velocity distribution become
isotropic with respect to that flow.

Now let’s consider the opposite process of the par-
ticle diffusing from behind the shock to the upstream
region in front of the shock. Now the velocity distri-
bution of the particles is isotropic, behind the shock,
and, when they cross the shock front, they encounter

gas moving towards the shock front, again with the
same velocity 3

4
U . In other words, the particle under-

goes exactly the same process of receiving a small
increase ΔE in energy on crossing the shock from
downstream to upstream as it did in traveling from
upstream to downstream.

This is the clever aspect of this acceleration mecha-
nism. Every time the particle crosses the shock front
it receives an increase in energy-and the increment in
energy is the same going in both directions. Thus,
unlike the standard Fermi mechanism, in which there
are both head-on and following collisions, in the case
of the shock front, the collisions are always head on
and the energy is transferred to the particles. The
beauty of the mechanism is the complete symmetry
between the passage of the particles from upstream to
downstream and from downstream to upstream
through the shock wave.

3. Let us consider the process of acceleration in a somewhat more quantitative way. We
can work out the expressions of β and P for this cycle by using some simple arguments. First,
we evaluate the average increase in the energy of the particle on crossing from the upstream to
the downstream sides of the shock. The gas on the downstream side approaches the particle at a
velocity V = 3

4
U . By performing a Lorentz transformation find the particle’s energy

when it passes into the downstream region (taking the x-coordinate perpendicular
to the shock) ;

4. We assume that the shock is non-relativistic so that V � c, γV ≈ 1, but that the particles
are relativistic, so that E ≈ pc and px = E

c
cosθ. Rewrite the energy gain ΔE and ΔE

E
;

5. We now seek the probability that the particles which cross the shock waves arrive at an
angle θ per unit time. This is a standard piece of kinetic theory. The number of particles within
the angle θ to θ + dθ is proportional to sinθdθ, but the rate at which they approach the shock
front is proportional to the x-component of their velocities, c cosθ. Therefore the probability of
the particle crossing the shock is proportional to sinθdθc cosθ. Normalizing so that the integral
of the probability distribution over all the particles approaching the shock is equal to unity, that
is, those with θ

2
in the range 0 to π

2
, we find p(θ) = 2 sinθ cosθdθ. You can now write the

average gain in energy on crossing the shock.
The particle’s velocity vector is randomized

without any energy loss by scattering in the down-
stream region and it then re-crosses the shock, when it
gains another fractional increase in energy 2V

3c
, so

that, in making one round trip across the shock and
back again, the fractional energy increase is, on
average : 〈

ΔE
E

〉
=

4
3

V
c

.

Consequently, β =
E

E0
= 1+

4V

3c
in one round trip.

According to classical particle theory, the number
of particles crossing the shock is Nc/4, where N is the
number density of particles. This is the average
number of particles crossing the shock in either direc-
tion, since, as noted above, the particles scarcely
notice the shock. Downstream, however, the particles
are swept away or “advected” from the shock, because
the particles are isotropic in that frame. It can be
seen that the particles are removed from the region of

the shock at a rate NV = N
U

4
. Thus, the fraction of

the particles lost per unit time is NU/4

Nc/4
=

U

c
. Since we

assume that the shock is non-relativistic, it can be
seen that only a very small fraction of the particles is
lost per cycle. Thus P = 1 − U

c
. This solves the

problem since we need ln β and ln P to insert into Eq.
(9). Therefore, since ln P = ln (1− U

c
)≈− U

c
and ln β =

ln (1 +
4V

3c
)≈ 4V

3c
=

U

c
, one finds :

ln P
ln β

=− 1,

and hence the differential energy spectrum of the high
energy particles is :

N(E) dE∝E−2dE.

This is the result we have been seeking. It may be
objected that we have obtained a value of 2 rather
than 2.5 for the exponent of the differential energy
spectrum, and that problem cannot be neglected.
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3 Maximum attainable Energy - Hillas Plot

Derive, by using Maxwell’s equations, the
maximum amount of energy a particle of
charge Ze can attain in a magnetic field B
and accelerating scale L.

What is the Larmor Radius of a particle
of charge Ze in a magnetic field B as a func-
tion of its energy E ? What constraint does
that impose on the accelerating scale L ?
How those 2 relationships compare ?

All estimates lead to Emax ∼ ΓZeB R
(where Γ is the Lorentz factor in the shocks,
in e.g. GRBs) - Hillas results (see the plot).

Figure 2. The So-called Hillas-Plot.

4 GZK Cut-off

The cosmic medium is filled by back-
ground radiation of relic photons, left over
from the big bang, of typical energy 10−3eV.
We consider the propagation of a high energy
proton through this medium.

Let pμ = (ε, pI ) be the photon 4-
momentum. Let Pμ = (E, PI ) be the proton 4-
momentum. Evaluate the center-of-mass
energy εCM.

Calculate the threshold for the reaction
γ + p→Δ→π +N to occur.

This results in a mean free path for pro-
tons of about 100 Mpc at 1020eV. This is
called the Gresein-Zatsepin-Kuzmin cutoff,
which is seen in the following figure.
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Figure 3. UHECR Spectrum as measured by AGASA.
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