Future Short Wavelength SASE FELs

Extension of existing projects:

APS-FEL: extension to 50 nm

TTF-II: extension to 6 nm (1 GeV) underway; will become a user facility

New Projects:

Linac Coherent Light Source (LCLS)	1.5 Å	14.3 GeV	Linac
TESLA X-FEL	0.85 Å	50 GeV	SC linac
Spring-8 Compact SASE Source (SCCS)	3.6 nm	1 GeV	Linac
BESSY-FEL	1.2 nm	2.25 GeV	Linac
SPARX/FERMI (Italy)	1.2/1.5 nm	2.5/3 GeV	Linac
4GLS (UK)	12 nm	0.9 GeV	ERL

Linac Coherent Light Source - LCLS

LCLS Main Design Parameters

Fundamental FEL Radiation Wavelength	1.5	15	Å
Electron Beam Energy	14.3	4.5	GeV
Normalized RMS Slice Emittance	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Bunch/Pulse Length (FWHM)	230	230	fs
Relative Slice Energy Spread @ Entrance	<0.01	0.025	%
Saturation Length	87	25	m
FEL Fundamental Saturation Power @ Exit	8	17	GW
FEL Photons per Pulse	1.1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
Transverse Coherence	Full	Full	
RMS Slice X-Ray Bandwidth	0.06	0.24	%
RMS Projected X-Ray Bandwidth	0.13	0.47	%
* photons/sec/mm ² /mrad ² / 0.1%-BW			

LCLS

Total Estimated Cost (\$FY2002) \$	196.5 N
 Project Engineering and Design (direct) 	\$ 29.7 M
 Construction(direct) 	\$ 106.2 M
Overhead	\$ 23.1 M
Contingency	\$ 37.5 M

TimescalesMay 2002Projected DoE approval of preliminary project baseline (CD-1)Jan. 2003Projected DoE approval of performance project baseline (CD-2)Mar. 2004Projected DoE approval for start of construction (CD-3)Oct. 2004Start of ConstructionOct. 2007Projected DoE approval for start of operation (CD-4)

LCLS Science Program

Program developed by international team of ~45 scientists working with accelerator and laser physics communities

Femtochemistry

Nanoscale Dynamics in Condensed matter

Atomic Physics

Plasma and Warm Dense Matter

Structural Studies on Single Particles and Biomolecules

X-ray Laser Physics

TESLA: The Superconducting Electron-Positron Linear Collider with an Integrated X-ray Laser Laboratory

Construction time	8 years
TOTAL	3877 M EUR
Additional cost for X-FEL	531 M EUR
Detector for Particle Physics	210 M EUR
500 GeV linear collider	3136 M EUR

TESLA: The Superconducting Electron-Positron Linear Collider with an Integrated X-ray Laser Laboratory

Technical Design Report March 2001

TESLA XFEL: Integration with the Linear Collider

LCLS and TESLA XFEL Performance

Spring-8 Compact SASE Source

Technical Challenges for Short Wavelength SASE FELs

Injector

- Low emittance
- Stability

Compression and Acceleration

- Emittance preservation due to Coherent Synchrotron Radiation (CSR) and transverse wakefield effects
- Stability (phase, amplitude)

Undulators

- Precise fabrication of long undulators
- Trajectory alignment
- Wakefields in the undulator (resistive wall, surface roughness, geometrical changes)

Photon beams handling

- optics, diagnostics etc.

Technical Challenges for Short Wavelength SASE FELs

courtesy of S.V. Milton, APS

TESLA XFEL: Parameter sensitivity

Photo-injectors

Improvement in beam emittance due to the development of thermionic, and later photo-cathode, r.f. cavity guns :

"Standard" 1.6 cell design: UV drive laser photocathode

LCLS Injector Requirements

Parameter	Value	
Peak current Charge Normalized transverse emittance projected/slice Rate Energy	100 A 0.2 – 1 nC ≤ 1.2 / 1.0 µm rms 120 Hz 150 MeV	"Recent" results (PAC '01) SLAC/GTF 1.2 μm at 0.3 nC BNL/ATF 0.84 μm at 0.5 nC
Energy spread @ 150 MeV projected/slice Gun laser timing stability Booster mean rf phase stability Charge stability Bunch length stability	$\leq 0.1 / 0.01 \%$ $\leq 0.7 \text{ ps rms}$ $0.1 ^{\circ}$ $\leq 2.0 \% \text{ rms}$ $\leq 5 \% \text{ rms}$	Note the severe stability requirements

Magnetic Bunch Compression

Magnetic Bunch Compression

Magnetic compression is usually carried out in more than one stage e.g. LCLS :

Coherent Synchrotron Radiation (CSR)

Free space radiation from bunch tail at point A overtakes bunch head, a distance s ahead of the source, at the point B which satisfies...

$$s = \operatorname{arc}(AB) - |AB| = Rq - 2R\sin(q/2) \approx Rq^{3}/24 = s_{2}$$

i.e. when $Lq^2 = 24s_z$

for LCLS:
$$s_z = 22 \text{ mn}, Lq^2 \sim 5 \ 10^{-4}$$

= 1 deg. bend, over 2 m

CSR ® Energy Variation along the Bunch

CSR ® Emittance Growth

Codes for "Start-end Simulations"

Macro particles External maps for E - and B-field Space Charge Macro particles Tracking by matrix elements Analytical model for CSR and wakefields

Macro particles and Discritized radiation field Analytical model for undulator wakefields

for LCLS ...

All four cases reach saturation

S. Reiche

Undulators

Short wavelength FELs with long undulators need focussing along the length

Undulator sections are interspersed with quadrupole focussing magnets (as well as other correction and diagnostic elements)

TESLA XFEL Undulators

Main TESLA XFEL Undulator Para	meters (SASE1)	
Gap	12	mm	
Period Length	6	ст	
Peak On-Axis Field	1.32	Τ	
Κ	3.71		
Segment Length	5	m	
Number of Segments	Number of Segments 53		
Undulator Magnet Length	165	m	
Total Undulator Length	323	т	

Total	for	5	SASE	Devices	

Total No. Segments Total Undulator Length1.1km

231

TESLA TDR, March 2001

LCLS Undulator

Main LCLS Undulator Parameters					
Gap	6	mm			
Period Length	3	ст			
Peak On-Axis Field	1.32	Τ			
Κ		3.71			
Segment Length	3.42	m			
Number of Segments	3.	3			
Undulator Magnet Length	112.8	3 m			
Total Undulator Length	121. 1	l m			

Prototype LCLS undulator under test

Undulator Quality and Alignment

Very high field quality, and precise alignment, is required to maintain the beam trajectory within tight tolerances, e.g. TESLA XFEL

reduction in gain due to trajectory errors caused by random undulator field errors reduction in gain due to random quadrupole misalignments, before correction

Effect of Spontaneous Radiation

Weak taper of undulator field needed to compensate change in resonance condition due to energy loss caused by spontaneous emission :

for LCLS:
$$\frac{d}{dz}K = -1.5 \cdot 10^{-5} \,\mathrm{m}^{-1}$$

Harmonics

Harmonics in the low-Gain FEL

Lasing on the 3rd harmonic (and <u>not</u> on the fundamental) was first obtained in the Stanford Mark III FEL (Benson and Madey, 1989).

It was also shown that a FEL operating near saturation generates harmonics in excess of spontaneous radiation due to the harmonic content of the bunching (Bamford and Deacon, 1989).

Coherent Harmonic Generation

First demonstrated on ACO, where the 3rd harmonic of an 1.06 μ m Nd:YAG laser was generated with 10²-10³ enhancement over spontaneous emission (Girard et al. 1984).

Later experiments at SuperACO have shown also the 5th harmonic.

- requires very precise alignment of laser and electron beams

- average CHG output is limited by the laser repetition frequency (10-20 Hz in these experiments).

"Non-linear" Harmonic Generation

High gain regime experiments at ELF (35 GHz) showed a rapidly increasing signal at the 3rd harmonic: This was later explained as being due to the exponential gain on the fundamental driving the harmonic bunching:

R. Bonifacio et al., Nucl. Instr. Meth. A293 (1990) 627.

"Non-linear" Harmonic Generation

This led to the proposal for:

Resonant Frequency Tripling

A two-stage FEL amplifier, with the second undulator tuned to the third (or higher) harmonic of the first.

- no mirrors

- advantages of an amplifier configuration (narrow linewidth)

- no seed required at the output frequency

R. Bonifacio et al., Nucl. Instr. Meth. A296 (1990) 787.

High Gain Harmonic Generation (HGHG)

modified version of the the previous scheme, using a dispersion section to enhance the bunching:

Advantages of HGHG, compared to SASE:

- radiation is longitudinally coherent
- no spiking: smooth pulses in the temporal and spectral domains
- narrower linewidth
- wavelength stability provided by the seed laser
- adjustable pulse length by varying the seed laser pulse length
- shorter undulator

HGHG - First Experiment, BNL

Deep-Ultraviolet FEL (DUV-FEL), BNL

HGHG X-ray FEL

Cascaded HGHG using the 'fresh-part-of bunch' scheme :

P _{in} =300MW 10GW 2,250(Å) 450(Å)		50(Å)	1.4GW 90(Å)		1.8GW 30(Å)		140MW 10(Å)		P _{out} =2GW 10(Å)	
			e-bea 1500 3GeV	um Amp V	$\frac{1}{\sigma_{\gamma}} \frac{1}{\gamma} = \frac{1}{\gamma}$	mrad 5×10 ^{- 4}				
	1 st	Stage	2 nd	Stage	3 rd	Stage	4 th	Stage	Amplifier	
λ(Å)	2250	450	450	90	90	30	30	10	10	
$\lambda_w(cm)$	8.5	5.6	5.6	3.8	3.8	2.9	2.9	2.3	2.3	
dψ/dγ	0.	4	0.1		0	.1	0.	1		
L _w (m)	4	9.5	1	4	2	8.5	1.5	5.5	10	
$L_G(m)$	0.74	0.87	0.87	0.93	0.93	1.12	1.12	1.86	1.86	

 L_{total} =46m to reach 2 GW

J. Wu and L.H. Yu, Proc. PAC 2001

Two-stage SASE FEL

J. Feldhaus et al., Optics Comm. 140 (1997) 341.

Regenerative Amplifier FEL (RAFEL)

High-gain FEL with a small amount of feedback, to allow it reach saturation in a small number of passes. First developed and demonstrated at LANL (*Nguyen and Goldstein, 1997*).

The concept was then modified to include monochromatization so that the seed radiation is longitudinally coherent. (*Faatz et al., 1999*)

Experiment is currently being carried out at TTF-1:

66.4 m between the mirrors corresponds to 2 x distance between micropulses (9 MHz).

Motivation for Shorter Pulses: Radiation Damage

Chirped-beam Two-stage SASE FEL

C.B. Schroeder et al., PAC 2001

Reduction of pulse length by seeding

W. Brefeld et al., TESLA-FEL2001-02

"Pulse Slicing" using the FEL interaction

R.W. Schoenlein et al., Science 287 (2000) 223.

Conclusion

Since the first operation 25 years ago, FELs have branched out in many different directions so that today there is a very wide range of FEL related activity. (See for example the Proceedings of the Annual International FEL Conferences).

Many developments are underway, involving challenging accelerator physics and technological problems, particularly in the case of the short wavelength FELs

I hope these few lectures have stimulated some interest in this expanding and exciting field.